Understanding radioactive Cs contamination has been a central issue at Fukushima Daiichi and other nuclear legacy sites; however, atomic-scale characterization of radioactive Cs in environmental samples has never been achieved. Here we report, for the first time, the direct imaging of radioactive Cs atoms using high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In Cs-rich microparticles collected from Japan, we document inclusions that contain 27 - 36 wt% of Cs (reported as CsO) in a zeolite: pollucite.
View Article and Find Full Text PDFRadioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.
View Article and Find Full Text PDFBoron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg of B and 11.
View Article and Find Full Text PDFThe accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS).
View Article and Find Full Text PDF