The PRA1-superfamily member PRAF3 plays pivotal roles in membrane traffic as a GDI displacement factor via physical interaction with a variety of Rab proteins, as well as in the modulation of antioxidant glutathione through its interaction with EAAC1 (SLC1A1). Overproduction of PRAF3 is known to be toxic to the host cells, although the factors capable of cancelling the toxicity remained unknown. We here show that Rab1a can rescue the cytotoxicity caused by PRAF3 possibly by "positively" regulating ER-Golgi trafficking, cancelling the "negative" modulation by PRAF3.
View Article and Find Full Text PDFRecombinant techniques for target protein production have been rapidly established and widely utilised in today's biological research. Nevertheless, methods for membrane protein production have yet to be developed, since membrane proteins generally tend to be expressed at low levels, easily aggregated, and/or even toxic to their host cells. Here we report that a GFP-tagging technique can be applied for the stable production of membrane proteins that are toxic to their host cells when overexpressed, paving the way for future advances in membrane protein biochemistry and drug development.
View Article and Find Full Text PDFMALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection.
View Article and Find Full Text PDFStem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli.
View Article and Find Full Text PDFThe U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette.
View Article and Find Full Text PDFThe molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNA(Gln). The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNA(Glu) and Glu-tRNA(Gln).
View Article and Find Full Text PDFThe micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.
View Article and Find Full Text PDFTwo kinds of layer silicate powder, Micromica and chlorite, were used to aid protein crystallization by the addition to hanging drops. Using appropriate crystallization buffers, Micromica powder facilitated crystal growth speed for most proteins tested in this study. Furthermore, the addition of Micromica powder to hanging drops allowed the successful crystallization of lysozyme, catalase, concanavalin A, and trypsin even at low protein concentrations and under buffer conditions that otherwise would not generate protein crystals.
View Article and Find Full Text PDFGlutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution.
View Article and Find Full Text PDF