Publications by authors named "Hiroyuki Ohde"

Catalytic hydrogenations of olefins took place effectively in supercritical CO2 with Pd0 nanoparticles dispersed in the fluid phase using a water-in-CO2 microemulsion consisting of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as a surfactant, and 1-octanol as a cosolvent. The hydrogenated products dissolved in supercritical CO2 can be separated from the octanol solution containing AOT microemulsions with Pd0 nanoparticles by phase separation (upper phase, supercritical CO2 with hydrogenated products; lower phase, 1-octanol containing AOT microemulsions with Pd0 nanoparticles) accompanied by reduction of CO2 pressure. After collecting the hydrogenated products by flowing the upper CO2 phase to a collection vessel, the Pd0 nanoparticles remaining in the lower phase can be redispersed into supercritical CO2 by pressurizing the system to a pressure where a homogeneous phase is attained.

View Article and Find Full Text PDF

Swelled plastics in supercritical carbon dioxide provide unique environments for stabilizing palladium and rhodium nanoparticles and for catalytic hydrogenation. Complete hydrogenation of benzene to cyclohexane can be achieved in 10 minutes using the plastic stabilized Rh nanoparticles at 50 degrees C in supercritical CO(2). High efficiency, reusability, and rapid separation of products are some advantages of the plastic stabilized metal nanoparticles for catalytic hydrogenation in supercritical CO(2).

View Article and Find Full Text PDF

Rhodium nanoparticles dispersed by a CO2 microemulsion are effective catalysts for rapid hydrogenation of arenes in supercritical CO2.

View Article and Find Full Text PDF

Nanometer-sized metallic palladium particles can be synthesized by hydrogen reduction of Pd2+ ions dissolved in the water core of a water-in-CO2 microemulsion. The Pd nanoparticles, stabilized by the micromeulsion and uniformly dispersed in the supercritical fluid phase, are effective catalysts for hydrogenation of olefins. Examples of rapid and efficient hydrogenation of water-soluble and CO2-soluble olefins catalyzed by the Pd nanoparticles in supercritical CO2 are given.

View Article and Find Full Text PDF