Microphysiological system (MPS), a new technology for in vitro testing platforms, have been acknowledged as a strong tool for drug development. In the central nervous system (CNS), the blood‒brain barrier (BBB) limits the permeation of circulating substances from the blood vessels to the brain, thereby protecting the CNS from circulating xenobiotic compounds. At the same time, the BBB hinders drug development by introducing challenges at various stages, such as pharmacokinetics/pharmacodynamics (PK/PD), safety assessment, and efficacy assessment.
View Article and Find Full Text PDFMicrofluidic devices are important platforms to culture and observe biological tissues. Compared with conventional setups, microfluidic devices have advantages in perfusion, including an enhanced delivery of nutrients and gases to tissues. However, explanted tissues can maintain their functions for only hours to days in microfluidic devices, although their observations are desired for weeks.
View Article and Find Full Text PDFPhosphodiesterase 10A (PDE10A) inhibitors were designed and synthesized based on the dihydro-imidazobenzimidazole scaffold. Compound 5a showed moderate inhibitory activity and good permeability, but unfavorable high P-glycoprotein (P-gp) liability for brain penetration. We performed an optimization study to improve both the P-gp efflux ratio and PDE10A inhibitory activity.
View Article and Find Full Text PDFWe synthesized several biaryl derivatives as PDE10A inhibitors to prevent phototoxicity of 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (1) and found that the energy difference between the energy-minimized conformation and the coplanar conformation of the biaryl moiety helped facilitate prediction of the phototoxic potential of biaryl compounds. Replacement of the quinoline ring of 1 with N-methyl benzimidazole increased this energy difference and prevented phototoxicity in the 3T3 NRU test. Further optimization identified 1-methyl-5-(1-methyl-3-{[4-(1-methyl-1H-benzimidazol-4-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one (38b).
View Article and Find Full Text PDFA novel class of phosphodiesterase 10A inhibitors with potent PDE10A inhibitory activity and reduced CYP3A4 inhibition was designed and synthesized starting from 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (1). Replacement of pyridine ring of 1 with N-methyl pyridone ring drastically improved CYP3A4 inhibition, and further optimization of these quinoline analogues identified 1-methyl-5-(1-methyl-3-{[4-(quinolin-2-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one (42b), which showed potent PDE10A inhibitory activity and a good CYP3A4 inhibition profile. A PET study with (11)C-labeled 42b indicated that 42b exhibited good brain penetration and specifically accumulated in the rodent striatum.
View Article and Find Full Text PDFIn the process of neuronal wiring, axons derived from the same functional group typically extend together, resulting in fascicle formation. How these axons communicate with one another remains largely unknown. Here, we show that protocadherin-17 (Pcdh17) supports this group extension by recruiting actin polymerization regulators to interaxonal contact sites.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
February 2014
Magnetic stimulation noninvasively modulates neuronal activity through a magnetically induced current. However, despite the usefulness and popularity of this method, the effects of neuronal activity in the nonstimulated regions on the stimulus responses are unknown. Here, we report that the induced current-evoked responses were affected by neuronal activities in the nonstimulated regions.
View Article and Find Full Text PDF1. Glucuronidation via UDP-glucuronosyltransferase (UGT) in the intestine has been reported to influence the pharmacokinetics (PK) of drugs; however, information concerning the differences in activity between species is limited. Here, we investigated the in vitro and in vivo activities of intestinal glucuronidation for 17 UGT substrates in humans, rats, dogs and monkeys.
View Article and Find Full Text PDFThe pregnane xenobiotic receptor (PXR) is a key transcriptional regulator of cytochrome P450 (CYP) 3A, a crucial enzyme in the metabolism and detoxification of xenobiotics and endobiotics. PXR is activated by a wide variety of chemicals and serves as a master regulator of detoxification in mammals. Here, we report a fast evaluation method for PXR-drug interactions using differential scanning fluorometry (DSF).
View Article and Find Full Text PDFIn order to examine the formation of a neural network and the functional development of a visual pathway, we performed in vitro reconstruction of the retinotectal pathway using organotypic explants and co-culture methods. Retinas and superior colliculus (SC) slices obtained from embryonic rats were co-cultured on microelectrode array (MEA) substrates for four weeks. We observed retinal ganglion cell neurites innervating SC slices that evoked responses in retinas or SC slices after applying electrical stimulation.
View Article and Find Full Text PDFWe report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel.
View Article and Find Full Text PDFAlthough stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques.
View Article and Find Full Text PDFWe investigated whether the effects of intestinal glucuronidation on the first-pass effect can be predicted from in vitro data for UDP-glucuronosyltransferase (UGT) substrates. Human in vitro intrinsic glucuronidation clearance (CL(int, UGT)) for 11 UGT substrates was evaluated using pooled intestinal microsomes (4.00-4620 μl · min⁻¹ · mg⁻¹) and corrected by the free fraction in the microsomal mixture (CLu(int), (UGT) = 5.
View Article and Find Full Text PDFWe present a lithography-free procedure for fabricating intrinsically three-dimensional smooth-walled microchannels within poly(dimethylsiloxane) (PDMS) elastomer using hydrogel molds. In the fabrication process, small pieces of agarose gel ("wires" or "chips") are embedded in uncured PDMS composite, arranged in the shape of the desired microchannels, and used as molds to form the microchannels. The point of the process is that molds for creating junctions of microchannels such as T-junctions or cross-junctions can be robustly formed by simply grafting gel wires in uncured PDMS composite without using adhesive agents.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Rat superior cervical ganglia (SCG), which are sympathetic ganglia, neurons and ventricular myocytes (VMs) were co-cultured separately in a minichamber placed on a microelectrode-array (MEA) substrate. The minichamber was fabricated photolithographically and had 2 compartments, 16 microcompartments and 8 microconduits. The SCG neurons were seeded into one of the compartments and all of the microcompartments using a glass pipette controlled by a micromanipulator and a microinjector.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Magnetic stimulation is able to modulate the neuronal network activity using the non-invasive magnetically induced current. However, it is unknown how stimulation modulates the neuronal network activity. Therefore, we considered that precise stimulation and evaluation of the modulation of network activities in the vicinity of stimulated sites is required.
View Article and Find Full Text PDFOxidative stress is widely recognized as being associated with a number of disorders, including metabolic dysfunction and atherosclerosis. A series of substituted 4-quinolone derivatives were prepared and evaluated as inhibitors of reactive oxygen species (ROS) production from human umbilical vein endothelial cells (HUVECs). One compound in particular, 2-({[4-(3-hydroxy-3-methylbutoxy)pyridin-2-yl]oxy}methyl)-3-methylquinolin-4(1H)-one (25b), inhibited ROS production from HUVECs with an IC(50) of 140 nM.
View Article and Find Full Text PDFPrecise control of differentiation processes of pluripotent stem cells is a key component for the further development of regenerative medicine. For this purpose, combining a cell-aggregate-size treatment for regulating intercellular signal transmissions and an electrical stimulation technique for inducing cellular responses is a promising approach. In the present study, we developed microfabricated electrode substrates that allow simultaneous stimulation of embryoid bodies (EBs) of P19 cells.
View Article and Find Full Text PDFRegeneration of damaged central nervous systems (CNS) is an important topic in neuroscience and neuroengineering. Grafting new neurons derived from pluripotent stem cells into damaged regions can be done to restore functions after injury. Little is known, however, about network-wide interactions between stem-cell-derived neurons and CNS neurons.
View Article and Find Full Text PDFRat superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) were co-cultured separately in a minichamber placed on a microelectrode-array (MEA) substrate. The minichamber, fabricated photolithographically using polydimethylsiloxane (PDMS), had 2 compartments, 16 microcompartments and 8 microconduits. The SCG neurons were seeded into one of the compartments and all of the microcompartments using a glass pipette controlled by a micromanipulator and a microinjector.
View Article and Find Full Text PDFThis paper describes an advanced Micro Channel Array (MCA) for recording electrophysiological signals of neuronal networks at multiple points simultaneously. The developed MCA is designed for neuronal network analysis which has been studied by the co-authors using the Micro Electrode Arrays (MEA) system, and employs the principles of extracellular recordings. A prerequisite for extracellular recordings with good signal-to-noise ratio is a tight contact between cells and electrodes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
Modulation of pluripotent stem cell differentiation by several environmental factors, such as physical stimulation, is important theme in tissue engineering. In this study, we report the effects of extremely low frequency magnetic fields (ELF-MFs) exposure (1 mT or 10 mT, 50 Hz, sinusoidal) on the neuronal differentiation process of P19 embryonal carcinoma cells (P19 cells). Here, during induction of differentiation, the ELF-MFs exposed to embryoid bodies (EBs).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
Precise control of differentiation processes of pluripotent stem cell is key component for realization of regenerative medicine. Electrical stimulation is one of the promising techniques, particularly for regulation of neuronal regeneration. In the present study, we developed substrates with embedded electrodes, which allowed ensemble electrical stimulation of embryoid bodies (EBs) of stem cells.
View Article and Find Full Text PDF