Interleukin (IL)-13 has emerged as one of the recently identified cytokine. Since IL-13 causes the severity of COVID-19 and alters crucial biological processes, it is urgent to explore novel molecules or peptides capable of including IL-13. Computational prediction has received attention as a complementary method to in-vivo and in-vitro experimental identification of IL-13 inducing peptides, because experimental identification is time-consuming, laborious, and expensive.
View Article and Find Full Text PDF2'-O-methylation (2-OM or Nm) is a widespread RNA modification observed in various RNA types like tRNA, mRNA, rRNA, miRNA, piRNA, and snRNA, which plays a crucial role in several biological functional mechanisms and innate immunity. To comprehend its modification mechanisms and potential epigenetic regulation, it is necessary to accurately identify 2-OM sites. However, biological experiments can be tedious, time-consuming, and expensive.
View Article and Find Full Text PDFRNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases.
View Article and Find Full Text PDFDihydrouridine (DHU, D) is one of the most abundant post-transcriptional uridine modifications found in tRNA, mRNA, and snoRNA, closely associated with disease pathogenesis and various biological processes in eukaryotes. Identifying D sites is important for understanding the modification mechanisms and/or epigenetic regulation. However, biological experiments for detecting D sites are time-consuming and expensive.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are widely employed anthropogenic fluorinated chemicals known to disrupt hepatic lipid metabolism by binding to human peroxisome proliferator-activated receptor alpha (PPARα). Therefore, screening for PFAS that bind to PPARα is of critical importance. Machine learning approaches are promising techniques for rapid screening of PFAS.
View Article and Find Full Text PDFKinetic modeling is an essential tool in systems biology research, enabling the quantitative analysis of biological systems and predicting their behavior. However, the development of kinetic models is a complex and time-consuming process. In this article, we propose a novel approach called KinModGPT, which generates kinetic models directly from natural language text.
View Article and Find Full Text PDFLuminescence from solids such as crystals and aggregates is of growing academic and industrial interest. In this study, we report decomposition of the unpolarized fluorescence spectrum of uniaxially oriented 1,3,5-triphenylbenzene (TPB) microcrystals into four polarized spectra measured with polarizer (V: vertical and H: horizontal) and analyser (V: vertical and H: horizontal), where V and H indicate perpendicular and parallel to the layer of TPB molecules in the crystal, respectively. Resolved spectra were interpreted in terms of the molecular and excimer like (J- and H-dimer) emissions.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2022
N6-methyladenine (6mA) plays a critical role in various epigenetic processing including DNA replication, DNA repair, silencing, transcription, and diseases such as cancer. To understand such epigenetic mechanisms, 6 mA has been detected by high-throughput technologies on a genome-wide scale at single-base resolution, together with conventional methods such as immunoprecipitation, mass spectrometry and capillary electrophoresis, but these experimental approaches are time-consuming and laborious. To complement these problems, we have developed a CNN-based 6 mA site predictor, named CNN6mA, which proposed two new architectures: a position-specific 1-D convolutional layer and a cross-interactive network.
View Article and Find Full Text PDFBackground: Kinetic modeling is a powerful tool for understanding the dynamic behavior of biochemical systems. For kinetic modeling, determination of a number of kinetic parameters, such as the Michaelis constant (K), is necessary, and global optimization algorithms have long been used for parameter estimation. However, the conventional global optimization approach has three problems: (i) It is computationally demanding.
View Article and Find Full Text PDFDrug-target protein interaction (DTI) identification is fundamental for drug discovery and drug repositioning, because therapeutic drugs act on disease-causing proteins. However, the DTI identification process often requires expensive and time-consuming tasks, including biological experiments involving large numbers of candidate compounds. Thus, a variety of computation approaches have been developed.
View Article and Find Full Text PDFComput Struct Biotechnol J
October 2022
Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis.
View Article and Find Full Text PDFThe COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance.
View Article and Find Full Text PDFAs one of the most prevalent post-transcriptional epigenetic modifications, N5-methylcytosine (m5C) plays an essential role in various cellular processes and disease pathogenesis. Therefore, it is important accurately identify m5C modifications in order to gain a deeper understanding of cellular processes and other possible functional mechanisms. Although a few computational methods have been proposed, their respective models have been developed using small training datasets.
View Article and Find Full Text PDFObjectives: We evaluated the time course of the American Spinal Cord Injury Association (ASIA) impairment scale (AIS) for up to three months in participants within 72 h after traumatic spinal cord injury (TSCI) with complete paralysis. We aimed to determine the most useful sacral-sparing examination (deep anal pressure [DAP], voluntary anal contraction [VAC], S4-5 light touch [LT], or pin prick [PP] sensation) in determining AIS grades.
Design: Retrospective cohort study.
N6-methyladenine (6mA) is associated with important roles in DNA replication, DNA repair, transcription, regulation of gene expression. Several experimental methods were used to identify DNA modifications. However, these experimental methods are costly and time-consuming.
View Article and Find Full Text PDFSurgical aortic valve replacement (SAVR) in patients with anomalous origination of a coronary artery from the opposite sinus is associated with risk for myocardial ischemia during the perioperative period. [1] However, iatrogenic coronary ostial stenosis (ICOS) generally occurs within the first 6 months after SAVR. We present an unusual case of a 74-year-old man with anomalous origination of the right coronary artery from the left coronary sinus, who developed effort angina due to ICOS 19 months following SAVR and ascending aorta replacement.
View Article and Find Full Text PDFViral infection involves a large number of protein-protein interactions (PPIs) between human and virus. The PPIs range from the initial binding of viral coat proteins to host membrane receptors to the hijacking of host transcription machinery. However, few interspecies PPIs have been identified, because experimental methods including mass spectrometry are time-consuming and expensive, and molecular dynamic simulation is limited only to the proteins whose 3D structures are solved.
View Article and Find Full Text PDFThis study examined glass-based organic electroluminescence in the presence of a cyclodextrin polymer as an interlayer. Glass-based organic electroluminescence was achieved by the deposition of five layers of N,N'-Bis(3-methylphenyl)N,N'-bis(phenyl)-benzidine, cyclodextrin polymer (CDP), tris-(8-hydroxyquinolinato) aluminium LiF and Al on an indium tin oxide-coated glass substrate. The glass-based OEL exhibited green emission owing to the fluorescence of tris-(8-hydroxyquinolinato) aluminium.
View Article and Find Full Text PDFNeuropeptides (NPs) are the most versatile neurotransmitters in the immune systems that regulate various central anxious hormones. An efficient and effective bioinformatics tool for rapid and accurate large-scale identification of NPs is critical in immunoinformatics, which is indispensable for basic research and drug development. Although a few NP prediction tools have been developed, it is mandatory to improve their NPs' prediction performances.
View Article and Find Full Text PDFNitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation.
View Article and Find Full Text PDFPupylation is a type of reversible post-translational modification of proteins, which plays a key role in the cellular function of microbial organisms. Several proteomics methods have been developed for the prediction and analysis of pupylated proteins and pupylation sites. However, the traditional experimental methods are laborious and time-consuming.
View Article and Find Full Text PDFA virtual metabolic human model is a valuable complement to experimental biology and clinical studies, because research involves serious ethical and technical problems. I have proposed a multi-organ and multi-scale kinetic model that formulates the reactions of enzymes and transporters with the regulation of hormonal actions at postprandial and postabsorptive states. The computational model consists of 202 ordinary differential equations for metabolites with 217 reaction rates and 1,140 kinetic parameter constants.
View Article and Find Full Text PDFMethylation of DNA N6-methyladenosine (6mA) is a type of epigenetic modification that plays pivotal roles in various biological processes. The accurate genome-wide identification of 6mA is a challenging task that leads to understanding the biological functions. For the last 5 years, a number of bioinformatics approaches and tools for 6mA site prediction have been established, and some of them are easily accessible as web application.
View Article and Find Full Text PDFRedox-sensitive cysteine (RSC) thiol contributes to many biological processes. The identification of RSC plays an important role in clarifying some mechanisms of redox-sensitive factors; nonetheless, experimental investigation of RSCs is expensive and time-consuming. The computational approaches that quickly and accurately identify candidate RSCs using the sequence information are urgently needed.
View Article and Find Full Text PDF