Publications by authors named "Hiroyuki Kariya"

In vertebrate germ cell differentiation, gonadal somatic cells and germ cells are closely related. By analyzing this relationship, it has recently been reported in mammals that primordial germ cells (PGCs), induced from pluripotent stem cells and germline stem cells, can differentiate into functional gametes when co-cultured with fetal gonadal somatic cells. In some fish species, differentiation into functional sperm by reaggregation or co-culture of gonadal somatic cells and germ cells has also been reported; however, the relationship between gonadal somatic cells and germ cells in these species is not well-understood.

View Article and Find Full Text PDF

Many techniques have been tested for their ability to restore cartilage defects, but several problems still remain in the complete healing of injured cartilage. In our previous study, we found that a carboxymethyl-chitin/beta-tricalcium phosphate (CM-chitin/beta-TCP) composite induced cartilage regeneration in the osteochondral defects of rabbits in vivo. We also found that CM-chitin stimulated peritoneal exudate cells (PEC) in mice and induced several kinds of inflammatory cytokines and transforming growth factor beta-1 (TGF-beta1).

View Article and Find Full Text PDF

Many techniques to restore cartilage defection have been tried. However, the development is still under way because of problems, including loosening of artificial joint, degenerative change of compensated tissue, risk of viral transmission via allograft/autograft, and cost of therapeutic materials for repair. In the previous research, we found that complementing cartilage defective part with carboxymethyl-chitin (CM-chitin)/beta-tricalcium phosphate composite induced regeneration of cartilage in rabbits in vivo, and it is presumable that CM-chitin plays a key role in chondrogenesis causing the regeneration of cartilage.

View Article and Find Full Text PDF

Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of TLR2. However, we previously demonstrated that LTA fraction prepared from bacterial cells contains lipoproteins, which activate cells via TLR2. In this study, we investigated the immunobiological activity of LTA fraction obtained from S.

View Article and Find Full Text PDF

Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of Toll-like receptor 2 (TLR2). In this study, we demonstrated that lipoproteins obtained from S. aureus are potent activators of TLR2.

View Article and Find Full Text PDF