Publications by authors named "Hiroyuki Kaizawa"

Background: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks.

Materials And Methods: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines.

View Article and Find Full Text PDF

Background: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks.

Materials And Methods: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines.

View Article and Find Full Text PDF

Phosphoinositides have crucial roles in cellular controls, many of which have been established through the use of small-molecule inhibitors. Here, we describe YM201636, a potent inhibitor of the mammalian class III phosphatidylinositol phosphate kinase PIKfyve, which synthesizes phosphatidylinositol 3,5-bisphosphate. Acute treatment of cells with YM201636 shows that the PIKfyve pathway is involved in the sorting of endosomal transport, with inhibition leading to the accumulation of a late endosomal compartment and blockade of retroviral exit.

View Article and Find Full Text PDF

Regulated secretion depends upon a highly coordinated series of protein-protein and protein-lipid interactions. Two phosphoinositides, phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3-phosphate, are important for the ATP-dependent priming of the secretory apparatus prior to Ca(2+)-dependent exocytosis. Mechanisms that control phosphoinositide levels are likely to play an important role in priming fine tuning.

View Article and Find Full Text PDF

We have previously reported the imidazo[1,2-a]pyridine derivative 4 as a novel p110alpha inhibitor; however, although 4 is a potent inhibitor of p110alpha enzymatic activity and tumor cell proliferation in vitro, it is unstable in solution and ineffective in vivo. To increase stability the pyrazole of 4 was replaced with a hydrazone and a moderately potent p110alpha inhibitor 7a was obtained. Subsequent optimization of 7a afforded exceptionally potent p110alpha inhibitors, including 8c and 8h, with IC(50) values of 0.

View Article and Find Full Text PDF

Extensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K.

View Article and Find Full Text PDF

4-Morpholin-4-ylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine 2a was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 1.4 microM. By structural modification of 2a, the 2-aryl-4-morpholinopyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative 10e was discovered as a p110alpha inhibitor with approximately 400-fold greater potency than 2a.

View Article and Find Full Text PDF

3-{1-[(4-Fluorophenyl)sulfonyl]-1H-pyrazol-3-yl}-2-methylimidazo[1,2-a]pyridine, 2a, was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 0.67microM, through screening in a scintillation proximity assay. Optimization of the substituents of 2a increased the p110alpha inhibitory activity by more than 300-fold (2g: IC(50)=0.

View Article and Find Full Text PDF

A series of 4-morpholino-2-phenylquinazolines and related derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. In this series, the thieno[3,2-d]pyrimidine derivative 15e showed the strongest inhibitory activity against p110alpha, with an IC(50) value of 2.0 nM, and inhibited proliferation of A375 melanoma cells with an IC(50) value of 0.

View Article and Find Full Text PDF

Factor Xa (fXa) is a serine protease, which plays a pivotal role in the coagulation cascade. To improve the oral anticoagulant activity of fXa inhibitors containing a 1,4-diazepane moiety as the P4 part, a prodrug strategy was examined. Among the compounds evaluated in this study, amidoxime prodrugs bearing an ester moiety, such as compounds 21 and 30, showed effective oral anticoagulant activity in mice.

View Article and Find Full Text PDF

Compound YM-60828 was previously characterized in our laboratory as a potent, selective and orally-bioavailable Factor Xa (FXa) inhibitor. The L-shape conformation of this compound in the active site of FXa was recognized as an important factor in displaying its FXa inhibitory activity. This led to the exploration of conformationally restricted cyclic scaffolds bearing a similar active conformation.

View Article and Find Full Text PDF

Factor Xa (FXa) is a serine protease which plays a pivotal role in the coagulation cascade. The inhibition of FXa has received great interest as a potential target for the development of new antithrombotic drug. Herein we describe a series of novel 7-amidino-2-naphthoanilide and 7-amidino-2-naphthalensulfonanilide derivatives which are potent FXa inhibitors.

View Article and Find Full Text PDF