Publications by authors named "Hiroyuki Chiku"

The in vitro relationship between the human p53 DNA binding domain (p53 DBD) and glycolipids was investigated. We isolated the glycolipid fraction from spinach (Spinacia oleracea L.) and found that the fraction inhibited the double-stranded DNA (dsDNA) binding activity of p53 DBD.

View Article and Find Full Text PDF

The in vitro relationship between human p53 DNA binding domain (p53 DBD) and FA was investigated. We found that saturated and monounsaturated long-chain FA inhibited the double-stranded DNA (dsDNA) binding activity of p53 DBD. The strongest inhibitors of saturated and unsaturated FA were docosanoic acid (22:0) and cis-12-heneicosenoic acid (21:1n-9), respectively.

View Article and Find Full Text PDF

Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions.

View Article and Find Full Text PDF

We have succeeded in developing a simple and effective protein refolding method using the inorganic catalyst, beta-zeolite. The method involves the adsorption of proteins solubilized with 6M guanidine hydrochloride from inclusion body (IB) preparations onto the zeolite. The denaturant is then removed, and the proteins in the IBs are released from the zeolite with polyoxyethylene detergent and salt.

View Article and Find Full Text PDF

The basidiomycete Coprinus cinereus has many advantages as a model organism for studying sexual development and meiosis, but it has been difficult to investigate using reverse-genetics methods, such as gene disruption by homologous recombination. Here, gene repression by dsRNA-mediated gene silencing was tried as an alternative method for reverse-genetics studies. It was shown that transformation of the LIM15/DMC1 dsRNA expression construct (LIM15dsRNA) resulted in genomic insertion of LIM15dsRNA and paucity of the LIM15/DMC1 transcript.

View Article and Find Full Text PDF

Hollow spherical particles with protein-silica hybrid shell structures have been synthesized through a combination of the catalytic activity of the protein and sonochemical treatment; the morphologies of the particles were controlled by varying the protein concentration.

View Article and Find Full Text PDF

Lim15/Dmc1 is a meiosis specific RecA-like protein. Here we propose its participation in meiotic chromosome pairing-related events along with DNA topoisomerase II. Analysis of protein-protein interactions using in vitro binding assays provided evidence that Coprinus cinereus DNA topoisomerase II (CcTopII) specifically interacts with C.

View Article and Find Full Text PDF

A novel RecA-like protein, differing from Dmc1 and Rad51, was characterized in Oryza sativa L. cv. Nipponbare.

View Article and Find Full Text PDF

Studies of mammalian terminal deoxyribonucleotidyltransferase (TdT) are facilitated by use of inhibitors that selectively knock down the activity of the enzyme. We have screened for selective inhibitors of TdT and identified a natural compound with this property in the Japanese vegetable, Arctium lappa. The compound has little effect on the activities of mammalian DNA polymerases, such as alpha, beta, delta or lambda polymerase, and prokaryotic DNA polymerases, such as Taq DNA polymerase, T4 DNA polymerase and Klenow fragment.

View Article and Find Full Text PDF

Previously, we described a novel DNA polymerase, designated as OsPolI-like, from rice. The OsPolI-like showed a high degree of sequence homology with the DNA polymerase I of cyanobacteria and was localized in the plastid. Here, we describe two PolI-like polymerases, designated as AtPolI-like A and AtPolI-like B, from Arabidopsis thaliana.

View Article and Find Full Text PDF

Zeolites are able to adsorb proteins on their surface and might be suitable as a new type of chromatographic carrier material for proteins and for their conjugates (Matsui et al., Chem. Eur.

View Article and Find Full Text PDF