Publications by authors named "Hiroyoshi Togo"

Factors explaining individual variations in whole body sweat sodium ion concentration ([Na]) during exercise are not fully understood. Galvanic skin conductance (GSC) reflects the electrical properties of the skin influenced by sweat rate (SR) and the presence of ions. Initiation of increases in this response to elevating sweating may reflect exceeding the maximal capacity of sweat ion reabsorption in sweat glands.

View Article and Find Full Text PDF

An electrocardiogram (ECG) is used to observe the electrical activity of the heart via electrodes on the body surface. Recently, an ECG with fewer electrodes, such as a bipolar ECG in which two electrodes are attached to the chest, has been employed as wearable devices. However, the effect of different geometrical factors and electrode-pair locations on the amplitude and waveform of ECG signals remains unclear.

View Article and Find Full Text PDF

Acceleration sensors are widely used in consumer wearable devices and smartphones. Postures estimated from recorded accelerations are commonly used as features indicating the activities of patients in medical studies. However, recording for over 24 h is more likely to result in data losses than recording for a few hours, especially when consumer-grade wearable devices are used.

View Article and Find Full Text PDF

Real-time monitoring of heart rate is useful for monitoring workers. Wearable heart rate monitors worn on the upper body are less susceptible to artefacts caused by arm and wrist movements than popular wristband-type sensors using the photoplethysmography method. Therefore, they are considered suitable for stable and accurate measurement for various movements.

View Article and Find Full Text PDF

Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sweat electrolyte concentration may be an effective tool for determining appropriate rehydration.

View Article and Find Full Text PDF

The last century has seen a gradual increase in global average temperatures-a phenomenon that has come to be known as global warming. The World Meteorological Organization (WMO) has reported that 2020 was one of the three warmest years on record and that the global average temperature was ~1.2°C above preindustrial (1850-1900) levels [1].

View Article and Find Full Text PDF

Athletes in all sports face injury or illness if they train too much. Therefore, it is crucial for them to manage their training load. Monitoring the heart rate is one way to estimate training load.

View Article and Find Full Text PDF

Recent studies of saccharides' peculiar anti-freezing and anti-dehydration properties point to a close association with their strong hydration capability and destructuring effect on the hydrogen bond (HB) network of bulk water. The underlying mechanisms are, however, not well understood. In this respect, examination of the complex dielectric constants of saccharide aqueous solutions, especially over a broadband frequency region, should provide interesting insights into these properties, since the dielectric responses reflect corresponding dynamics over the time scales measured.

View Article and Find Full Text PDF

In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution.

View Article and Find Full Text PDF