Phys Rev Lett
November 2023
The Wigner-Araki-Yanase (WAY) theorem states that additive conservation laws imply the commutativity of exactly implementable projective measurements and the conserved observables of the system. Known proofs of this theorem are only restricted to bounded or discrete-spectrum conserved observables of the system and are not applicable to unbounded and continuous observables like a momentum operator. In this Letter, we present the WAY theorem for possibly unbounded and continuous conserved observables under the Yanase condition, which requires that the probe positive operator-valued measure should commute with the conserved observable of the probe system.
View Article and Find Full Text PDFNumerous quantum error-mitigation protocols have been proposed, motivated by the critical need to suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the fundamental sampling cost-how many times an arbitrary mitigation protocol must run a noisy quantum device.
View Article and Find Full Text PDFEnergetic coherence is indispensable for various operations, including precise measurement of time and acceleration of quantum manipulations. Since energetic coherence is fragile, it is essential to understand the limits in distillation and dilution to restore damage. The resource theory of asymmetry (RTA) provides a rigorous framework to investigate energetic coherence as a resource to break time-translation symmetry.
View Article and Find Full Text PDFQuantum coherence is a useful resource for increasing the speed and decreasing the irreversibility of quantum dynamics. Because of this feature, coherence is used to enhance the performance of various quantum information processing devices beyond the limitations set by classical mechanics. However, when we consider thermodynamic processes, such as energy conversion in nanoscale devices, it is still unclear whether coherence provides similar advantages.
View Article and Find Full Text PDFPubl Astron Soc Jpn Nihon Tenmon Gakkai
April 2018
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission.
View Article and Find Full Text PDFThe optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively.
View Article and Find Full Text PDFA long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable.
View Article and Find Full Text PDFMany studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We present an inequality which holds in the thermodynamical processes with measurement and feedback controls and uses only the Helmholtz free energy and the entanglement of formation: W(ext)≤-ΔF-k(B)TΔE(F). The quantity -ΔE(F), which is positive, expresses the amount of entanglement transfer from system S to probe P through the interaction U(SP) during the measurement. It is easier to achieve the upper bound in this inequality than in the Sagawa-Ueda inequality [Phys.
View Article and Find Full Text PDF