A reactive oxygen species (ROS) assay has been widely used for photosafety assessment; however, the phototoxic potential of complex materials, including plant extracts, essential oils, and functional polymers, is unevaluable because of their undefined molecular weights. The present study was undertaken to modify the ROS assay protocol for evaluating phototoxic potentials of those materials with use of their apparent molecular weight (aMw). On preparing sample solutions for the ROS assay, aMw ranging from 150 to 350 was tentatively employed for test substances.
View Article and Find Full Text PDFCombined use of photochemical and pharmacokinetic (PK) data for phototoxic risk assessment was previously proposed, and the system provided reliable phototoxic risk predictions of chemicals in same chemical series. This study aimed to verify the feasibility of the screening system for phototoxic risk assessment on dermally-applied chemicals with wide structural diversity, as a first attempt. Photochemical properties of test chemicals, 2-acetonaphthalene, 4'-methylbenzylidene camphor, 6-methylcoumarin, methyl N-methylanthranilate, and sulisobenzone, were evaluated in terms of UV absorption and reactive oxygen species (ROS) generation, and PK profiles of the test chemicals in rat skin were characterized after dermal co-application.
View Article and Find Full Text PDFThe present study aimed to develop a photochemically stabilized formulation of dacarbazine [5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide; DTIC] for reducing the production of algogenic photodegradant (5-diazoimidazole-4-carboxamide; Diazo-IC). Photochemical properties of DTIC were characterized by UV-visible light spectral analysis, reactive oxygen species (ROS) assay, and photostability testing. A pharmacokinetic study was conducted after intravenous administration of DTIC formulations (1 mg-DTIC/kg) to rats.
View Article and Find Full Text PDFThe present investigation involved an attempt to develop a new reactive oxygen species (ROS) assay system for the photosafety assessment of chemicals using 1,3-diphenylisobenzofuran (DPBF), a fluorescent probe for monitoring ROS generation. The assay conditions of the fluorometric ROS (fROS) assay were optimized focusing on the solvent system, concentration of DPBF, fluorescent determination, screening run time and reproducibility. The photoreactivity of 21 phototoxic and 11 non-phototoxic compounds was assessed by fROS assay, and the obtained ROS data were compared with the results from a micellar ROS (mROS) assay and in vitro/in vivo phototoxicity information to confirm the predictive capacity of the fROS assay.
View Article and Find Full Text PDFSeveral testing methods have been established to identify potential phototoxins. The present study was undertaken to clarify the predictive ability of in vitro photosafety assays for photoallergenicity. On the basis of animal and/or clinical photosafety information, 23 photoallergens and 7 non-phototoxic/non-photoallergenic chemicals were selected and subjected to UV/VIS spectral analysis, reactive oxygen species (ROS)/micellar ROS (mROS) assays, and 3T3 neutral red uptake phototoxicity testing (3T3 NRU PT).
View Article and Find Full Text PDFThe present study aimed to clarify the mechanism of photodegradation of famotidine with riboflavin (FMT/RF), and to develop a photochemically stabilized formulation of FMT/RF. Photochemical properties of RF were characterized by UV-VIS spectral analysis, reactive oxygen species (ROS) assay, and photostability testing. Pharmacokinetic study was conducted in rats after intravenous administration of FMT (1 mg/kg) formulation containing RF (0.
View Article and Find Full Text PDFPhotoreactivity and dermal/ocular deposition of compounds have been recognized as key considerations for evaluating the phototoxic risk of compounds. Because some drugs are known to cause phototoxic reactions via generation of potent phototoxic metabolites, photosafety assessments on parent drugs alone may lead to false predictions about their photosafety. This study aimed to establish a new photosafety assessment strategy for evaluating the in vivo phototoxic potential of both a parent substance and its metabolites.
View Article and Find Full Text PDFThis study aimed to qualify photosafety screening on the basis of photochemical and pharmacokinetic (PK) data on dermally applied chemicals. Six benzophenone derivatives (BZPs) were selected as model compounds, and in vitro photochemical/phototoxic characterization and dermal cassette-dosing PK study were carried out. For comparison, an in vivo phototoxicity test was also conducted.
View Article and Find Full Text PDF