Publications by authors named "Hiroto Hatakeyama"

RNA vaccines based on Lipid nanoparticles (LNP) were put into practical use within only one year after the global outbreak of the coronavirus disease 2019 (COVID-19). This success of RNA vaccine highlights the utility of an mRNA delivery system as a vaccination strategy. Potent immunostimulatory activity of LNPs (i.

View Article and Find Full Text PDF

RNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify key factors that affect the effectiveness of exercise training in patients with chronic heart failure by analyzing data from the HF-ACTION study involving 2,130 patients.
  • Significant factors influencing exercise effects on mortality and hospitalization included beta-blocker use, pulse pressure, hemoglobin levels, and body mass index, leading to a hypothetical scoring system to identify which patients might benefit most from exercise.
  • The research emphasizes the importance of considering individual patient backgrounds when recommending exercise training, while acknowledging that exercise can still benefit many patients with various health issues despite some limitations in the study's findings.
View Article and Find Full Text PDF

Because of its efficient and robust gene transfer capability, messenger RNA (mRNA) has become a promising tool in various research fields. The lipid nanoparticle (LNP) is considered to be a fundamental technology for an mRNA delivery system and has been used extensively for the development of RNA vaccines against SARS-CoV-2. We recently developed ssPalm, an environmentally responsive lipid-like material, as a component of LNP for mRNA delivery.

View Article and Find Full Text PDF

The reactivation of anticancer immunity is a fundamental principle in cancer immunotherapy as evidenced by the use of immune checkpoint inhibitors (ICIs). While treatment with the ICIs is shown to have remarkable and durable therapeutic effects in the responders, the low objective response rate (<40%) continues to be a major problem. Since myeloid-derived suppressor cells (MDSCs), heterogenous cells with strong immunosuppressive activity that originate in the hematopoietic system, suppress the anticancer immunity via parallel immune checkpoint-dependent and independent pathways, these cells are potential targets for improving the efficacy of cancer immunotherapy.

View Article and Find Full Text PDF

Background: With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are one of the most successful technologies in messenger RNA (mRNA) delivery. While the liver is the most frequent target for LNP delivery of mRNA, technologies for delivering mRNA molecules to extrahepatic tissues are also important. Herein, it is reported on the development of an LNP that targets secondary lymphoid tissues.

View Article and Find Full Text PDF

Chemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.

View Article and Find Full Text PDF

Ceramide, a central molecule of sphingolipid metabolism, is phosphorylated to ceramide-1-phosphate (C1P) by ceramide kinase (CerK). The CerK/C1P pathway regulates many cellular functions, but its roles in immune/inflammation-related (IIR) diseases in vivo are not well known. Sepsis is an acute systemic inflammatory disease accompanied by damage/dysfunction in multiple organs.

View Article and Find Full Text PDF

Since the effect of cancer immunotherapy is largely dependent on the status of the immune system in the tumor microenvironment (TME), choice of therapy and the development of new therapies based on the immune status in the TME would be predicted to be effective. Unfortunately, the development of delivery systems for such therapy has been slow. Here, we defined a parameter of immune status in TME showing antitumor effects and demonstrated the cancer immunotherapy with an adjuvant loaded lipid nanoparticle (LNP), which was taken advantage the parameter.

View Article and Find Full Text PDF

Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine-rich proteoglycan, is highly expressed in TECs.

View Article and Find Full Text PDF

The second messenger 2'3'-cyclic-GMP-AMP (cGAMP) is thought to be transmitted from brain carcinomas to astrocytes via gap junctions, which functions to promote metastasis in the brain parenchyma. In the current study, we established a method to introduce cGAMP into astrocytes, which simulates the state of astrocytes that have been invaded by cGAMP around tumors. Astrocytes incorporating cGAMP were analyzed by metabolomics, which demonstrated that cGAMP increased glutamate production and astrocyte secretion.

View Article and Find Full Text PDF

Despite progress in the use of hyperthermia in clinical practice, the thermosensitivity of cancer cells is poorly understood. In a previous study, we found that sensitivity to hyperthermia varied between ovarian and uterine cancer cell lines. Upon hyperthermia, glycolytic enzymes decreased in hyperthermia-resistant SKOV3 cells.

View Article and Find Full Text PDF

Despite the promising anticancer effects of immune checkpoint inhibitors, their low objective response rate remains to be resolved; thus, combination therapies have been investigated. We investigated the combination of an anti-programmed cell death 1 (aPD-1) monoclonal antibody with the knockdown of vascular endothelial factor receptor 2 (VEGFR2) on tumor endothelial cells to overcome resistance to immune checkpoint inhibitors and improve the objective response rate. The successful delivery of small interfering RNA to tumor endothelial cells was achieved by RGD peptide-modified lipid nanoparticles composed of a novel, pH-sensitive, and biodegradable ssPalmO-Phe.

View Article and Find Full Text PDF

Global differences in changes in the numbers of population-adjusted daily test-positive cases (NPDP) and deaths (NPDD) by COVID-19 were analyzed for 49 countries, including developed and developing countries. The changes as a proportion of national population were compared, adjusting by the beginning of test-positive cases increase (BPI) or deaths increase (BDI). Remarkable regional differences of more than 100-fold in NPDP and NPDD were observed.

View Article and Find Full Text PDF

Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P), a bioactive sphingolipid. Since the mechanisms responsible for regulating the proliferation and migration/metastasis of cancer cells by the CerK/C1P pathway remain unclear, we conducted the present study. The knockdown of CerK in A549 lung and MCF-7 breast cancer cells (shCerK cells) increased the formation of lamellipodia, which are membrane protrusions coupled with cell migration.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the use of nanoparticle-mediated photothermolysis combined with checkpoint inhibitors to enhance immune responses against tumors without needing ex vivo cell manipulation.
  • The combination treatment significantly increased the presence of immune cells in tumors and improved survival rates in mouse models compared to single treatments.
  • The findings suggest that photothermolysis could be a valuable method to boost tumor immunity, especially when combined with other immunotherapy strategies.
View Article and Find Full Text PDF

Background: Recently, antiprogrammed cell death protein 1 (aPD-1) and antiprogrammed death-ligand 1 (aPD-L1) monoclonal antibodies (mAbs) have been approved. Even though aPD-1 and aPD-L1 mAbs target the same PD-1/PD-L1 axis, it is still unclear whether both mAbs exert equivalent pharmacological activity in patients who are sensitive to PD-1/PD-L1 blockade therapy, as there is no direct comparison of their pharmacokinetics (PK) and antitumor effects. Therefore, we evaluated the differences between both mAbs in PK and therapeutic effects in PD-1/PD-L1 blockade-sensitive mouse models.

View Article and Find Full Text PDF

Although sunitinib is the first-line drug for progressive renal cell carcinoma (RCC), most patients experience its tolerance. One possible way of overcoming drug resistance is combination therapy. Epigenetic modifier is one of the candidate drug group.

View Article and Find Full Text PDF

The noninferiority of direct oral factor Xa (FXa) inhibitors (rivaroxaban, apixaban, and edoxaban) in treatment of atrial fibrillation were demonstrated compared with warfarin by several large clinical trials; however, subsequent meta-analyses reported a higher risk of major bleeding with rivaroxaban than with the other FXa inhibitors. In the present study, we first estimated the changes of prothrombin time (PT) in 5 randomized trials based on reported population pharmacokinetic and pharmacodynamic models and then carried out a model-based meta-analysis to obtain models describing the relationship between PT changes and the event rates of ischemic stroke/systemic embolism (SE) and of major bleeding. By using the models, we simulated the optimal therapeutic doses for each FXa inhibitor.

View Article and Find Full Text PDF

 Nucleic acid therapy is expected to be a next generation medicine. We recently developed a multifunctional envelope-type nano device (MEND) for use as a novel delivery system. The modification of polyethylene glycol (PEG), i.

View Article and Find Full Text PDF

Acquired resistance to sunitinib is a challenge in the treatment of renal cell carcinoma (RCC). The dysregulation of cellular metabolism is prevalent during resistance acquisition. It is known that in sunitinib-resistant RCC 786-O (786-O Res) cells sunitinib is mainly sequestered in the intracellular lysosomes.

View Article and Find Full Text PDF

Significant progress has been achieved in the development of stimuli-responsive nanocarriers for drug delivery, diagnosis, and therapy. Various types of triggers are utilized in the development of nanocarrier delivery. Endogenous factors such as changes in pH, redox, gradient, and enzyme concentration which are linked to disease progression have been utilized for controlling biodistribution and releasing drugs from nanocarriers, as well as increasing subsequent pharmacological activity at the disease site.

View Article and Find Full Text PDF

In this study, intestinal drug-drug interactions (DDIs) for substrate drugs of P-glycoprotein were simulated extensively using the extended Q model and translocation model to explore the determinants of DDI. The results of analyses using both models suggested that permeability and active efflux clearance were the major factors that influenced the fraction absorbed (F). The results of simulation for 100 virtual drugs in which parameters were generated considering the actual values of commercially available drugs suggested that the ratio of the pH-corrected passive permeability to the intrinsic efflux clearance (P/CL) relative to that of digoxin would be a useful and quantitative index of P-glycoprotein (P-gp)-mediated DDI risk at lower doses.

View Article and Find Full Text PDF

Hyperthermia has been investigated as a potential treatment for cancer. However, specificity in hyperthermia application remains a significant challenge. Magnetic fluid hyperthermia (MFH) may be an alternative to surpass such a challenge, but implications of MFH at the cellular level are not well understood.

View Article and Find Full Text PDF