Publications by authors named "Hirotami T Imai"

Venom of the Australian ant species Myrmecia pilosula contains a number of allergenic peptides including pilosulins. To obtain novel cDNA clones that encode the pilosulin-related bioactive peptides, mRNA of M. pilosula species complex was subjected to RT-PCR in which the forward primer corresponds to a nucleotide sequence in the leader sequences of pilosulins.

View Article and Find Full Text PDF

Venom of an Australian ant species of the Myrmecia pilosula species complex (mss. name Myrmecia banksi Taylor) contains two major allergenic peptides, pilosulin 1 and pilosulin 2. To obtain novel cDNA clones that encode the pilosulin-related bioactive peptides, mRNA of another Myrmecia species was subjected to RT-PCR in which the forward primer corresponds to a nucleotide sequence in the leader sequences of pilosulin 1 and pilosulin 2.

View Article and Find Full Text PDF

The relationships among ant subfamilies were studied by phylogenetic analysis of rDNA sequences of 15 species from seven subfamilies. PCR primers were designed on the basis of the rDNA sequence of the Australian bulldog ant, Myrmecia croslandi, previously determined. Phylogenetic trees were constructed using sequences of a fragment of 18S rDNA (1.

View Article and Find Full Text PDF

The ancestral mammalian karyotype had been hypothesized to have had 2n ≈ 80 (the "fusion hypothesis"), 2n = 6-14 (the "fission hypothesis") or a diploid number close to the present mode (the "modal hypothesis"). The fusion hypothesis has long been the dominant paradigm in the study of karyotype evolution, but recent evidence favors the fission hypothesis, and our analysis also strongly supports fission as the predominant rearrangement compared to fusion. To formalize our analysis, we first define $$\overline A$$ chromosomes as a group containing both acrocentrics and telocentrics, and $$\overline M$$ chromosomes as all the rest.

View Article and Find Full Text PDF