Publications by authors named "Hirotaka Yoshioka"

The persistence of the median artery in adult life, a remnant of the early brachial artery in the embryonic stage, has been reported in many anatomical and clinical studies. Herein, we aimed to investigate the prevalence and origin of the median artery in cadavers. We examined 53 adult Japanese cadavers and carefully dissected 106 upper limbs, and the arterial systems in the forearms and hands were observed macroscopically.

View Article and Find Full Text PDF

Mutations in a common extracellular domain of fibroblast growth factor receptor (FGFR)-2 isoforms (type IIIb and IIIc) cause craniosynostosis syndrome and chondrodysplasia syndrome. FGF10, a major ligand for FGFR2-IIIb and FGFR1-IIIb, is a key participant in the epithelial-mesenchymal interactions required for morphogenetic events. FGF10 also regulates preadipocyte differentiation and early chondrogenesis in vitro, suggesting that FGF10-FGFR signaling may be involved in craniofacial skeletogenesis in vivo.

View Article and Find Full Text PDF

Cortisol and corticosterone (CORT) are steroid, antistress hormones and one of the glucocorticoids in humans and animals, respectively. This study evaluated the effects of CORT administration on the male reproductive system in early life stages. CORT was subcutaneously injected at 0.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the branching patterns of the tibial nerve's muscular branches in the popliteal fossa, aiming to explain the patterns that have been inconsistently described in textbooks.
  • - Researchers examined the tibial nerve branches in 62 lower limbs from adult cadavers, finding consistent origins for the branches to different calf muscles such as the gastrocnemius and soleus.
  • - The study proposes a new categorization of these branches into posterior and anterior groups, enhancing the understanding of the development of skeletal muscles in the leg's flexor compartment.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the fate of osteoblasts, finding that most undergo apoptosis while some differentiate into osteocytes or flatten to become bone lining cells, revealing the complexity of their roles in bone architecture.
  • - Researchers isolated Venus-positive osteoblasts from newborn mice and used single-cell RNA sequencing to categorize them into four distinct clusters based on gene expression, highlighting significant heterogeneity among osteoblasts.
  • - Analysis indicated that clusters 1 to 3 represent different stages of osteoblast maturity, with active protein synthesis genes, while cluster 4 suggests a distinct cell type that may retain progenitor characteristics, leading to new insights into osteoblast development.
View Article and Find Full Text PDF

Purpose: An extra muscle was observed on both sides of the popliteal fossa in the cadaver of a 78-year-old Japanese male during dissection. The aim of this case report was to identify whether this variant is a double plantaris or a third head of the gastrocnemius according to its morphological characteristics and innervation.

Methods: The muscles were displayed by careful dissection and delineation of surrounding structures.

View Article and Find Full Text PDF

The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested.

View Article and Find Full Text PDF

Communication between osteoblasts and osteoclasts plays a key role in bone metabolism. We describe here an unexpected role for matrix vesicles (MVs), which bud from bone-forming osteoblasts and have a well-established role in initiation of bone mineralization, in osteoclastogenesis. We show that the MV cargo miR-125b accumulates in the bone matrix, with increased accumulation in transgenic (Tg) mice overexpressing miR-125b in osteoblasts.

View Article and Find Full Text PDF

The type I transmembrane protein αKlotho (Klotho) serves as a coreceptor for the phosphaturic hormone fibroblast growth factor 23 (FGF23) in kidney, while a truncated form of Klotho (soluble Klotho, sKL) is thought to exhibit multiple activities, including acting as a hormone, but whose mode(s) of action in different organ systems remains to be fully elucidated. FGF23 is expressed primarily in osteoblasts/osteocytes and aberrantly high levels in the circulation acting via signaling through an FGF receptor (FGFR)-Klotho coreceptor complex cause renal phosphate wasting and osteomalacia. We assessed the effects of exogenously added sKL on osteoblasts and bone using Klotho-deficient () mice and cell and organ cultures.

View Article and Find Full Text PDF

The detection and discrimination of volatile carboxylic acid components, which are the main contributors to human body odor, have a wide range of potential applications. Here, a quartz crystal microbalance (QCM) sensor array based on molecularly imprinted polymer (MIP) nanobeads is developed for highly sensitive and selective sensing of typical carboxylic acid vapors, namely: propionic acid (PA), hexanoic acid (HA) and octanoic acid (OA). The MIP nanobeads were prepared by precipitation polymerization with methacrylic acid (MAA) as a functional monomer, trimethylolproane trimethacrylate (TRIM) as a crosslinker, and carboxylic acids (PA, HA and OA) as the template molecules.

View Article and Find Full Text PDF

Osteoblasts and adipocytes share a common mesenchymal progenitor in the bone marrow. This implies that a reciprocal relationship exists between osteogenic and adipogenic differentiation. Further, cells of osteoblast lineage transdifferentiate into adipocytes under some circumstances.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues.

View Article and Find Full Text PDF

Purpose: Mutation of the klotho gene in mice elicits a syndrome resembling accelerated human aging. However, there is limited evidence for the role of Klotho in the kidney. We conducted a comparative proteome analysis of wild-type (WT) and klotho-knockout (kl ) mouse kidneys to identify proteins involved in Klotho deficiency.

View Article and Find Full Text PDF

Amelogenesis is a multistep process that relies on specific temporal and spatial signaling networks between the dental epithelium and mesenchymal tissues. Epigenetic modifications of key developmental genes in this process may be closely linked to a network of molecular events. However, the role of epigenetic regulation in amelogenesis remains unclear.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 2 (Apex 2) plays a critical role in DNA repair caused by oxidative damage in a variety of human somatic cells. We speculated that chondrocyte Apex 2 may protect against the catabolic process of articular cartilage in osteoarthritis (OA). Higher levels of Apex 2 expression were histologically observed in severely compared with mildly degenerated OA cartilage from STR/OrtCrlj mice, an experimental model which spontaneously develops OA.

View Article and Find Full Text PDF

The phosphoglycerate kinase-2 (Pgk2) gene is regulated in a tissue-, cell type-, and developmental stage-specific manner during spermatogenesis and is required for normal sperm motility and fertility in mammals. Activation of Pgk2 transcription is regulated by testis-specific demethylation of DNA and binding of testis-specific transcription factors to enhancer and core promoter elements. Here, we show that chromatin remodeling including reconfiguration of nucleosomes and changes in histone modifications is also associated with transcriptional activation of the Pgk2 gene during spermatogenesis.

View Article and Find Full Text PDF

We previously reported that fetal rat calvaria (RC) cells are osteo-adipogenic bipotential and that PGE(2) receptors EP2 and EP4 are involved in bone nodule formation via both common and distinct MAPK pathways in RC cell cultures. Because PGE(2) participates in multiple biological processes including adipogenesis, it is of interest to determine the additional role(s) of PGE(2) in RC cells. PGE(2) increased the number of adipocyte colonies when RC cells were treated during proliferation but not other development stages.

View Article and Find Full Text PDF

Inorganic phosphate (Pi) is required in many biological processes, including signaling cascades, skeletal development, tooth mineralization, and nucleic acid synthesis. Recently, we showed that Pi transport in osteoblasts, mediated by Slc20a1, a member of the type III sodium-dependent phosphate transporter family, is indispensable for osteoid mineralization in rapidly growing rat bone. In addition, we found that bone mineral density decreased slightly with dysfunction of Pi homeostasis in aged transgenic rats overexpressing mouse Slc20a1 (Slc20a1-Tg).

View Article and Find Full Text PDF

Osteoblasts/osteocytes are the principle sources of fibroblast growth factor 23 (FGF23), a phosphaturic hormone, but the regulation of FGF23 expression during osteoblast development remains uncertain. Because 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and inorganic phosphate (Pi) may act as potent activators of FGF23 expression, we estimated how these molecules regulate FGF23 expression during rat osteoblast development in vitro. 1,25(OH)(2)D(3)-dependent FGF23 production was restricted largely to mature cells in correlation with increased vitamin D receptor (VDR) mRNA levels, in particular, when Pi was present.

View Article and Find Full Text PDF

In mice, male germ cells enter mitotic arrest beginning at 13.5 days postcoitum (dpc), and remain suspended in the G(0)/G(1) cell cycle stage until after birth. During this period, male germ cells undergo extensive epigenetic reprogramming, which is essential for their subsequent function as male gametes.

View Article and Find Full Text PDF

Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed.

View Article and Find Full Text PDF

In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development.

View Article and Find Full Text PDF

Cellular differentiation is mediated by differential gene expression. The cells of the testis are no exception. Indeed, recent studies based on microarray and expressed sequence tag analyses have revealed dynamic changes in gene expression during spermatogenesis.

View Article and Find Full Text PDF