Objective: Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment.
Methods: We prepared the BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion.
Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between (10)B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of (10)B atoms in tumour cells for effective tumour cell destruction by BNCT.
View Article and Find Full Text PDFIt is known that some cancers show platinum complex resistance and that others show platinum complex sensitivity among ovarian cancers. Oxaliplatin (cis-[oxalato[trans-l-1, 2-diamino-cyclohexane] platinum[II]]; l-OHP), an active anti-cancer agent consisting of platinum, inhibits RNA synthesis and results in cytostatic effects. We investigated the difference between an oxaliplatin-resistant ovarian cancer cell line, KFR, and an oxaliplatin-sensitive ovarian cancer cell line, KF-1, using DNA microarray analysis.
View Article and Find Full Text PDFBackground: Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.
View Article and Find Full Text PDFPancreatic cancer is one of the most difficult neoplasms to cure and there is a need for new combinated therapy. If sufficient boron compound can be targeted accurate to the tumour, Boron Neutron-Capture Therapy (BNCT) can be applied to pancreatic cancer. We administrated BNCT to a cancer with pancreatic cancer patient using intraoperative irradiation.
View Article and Find Full Text PDFThe cytotoxic effect of boron neutron capture therapy (BNCT) is due to a nuclear reaction between 10B and thermal neutrons. It is necessary to accumulate the 10B atoms to the tumor cells selectively for effective BNCT. In order to achieve an accurate measurement of 10B concentrations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of the sliced whole-body samples of tumor bearing mice using CR-39 plastic track detectors.
View Article and Find Full Text PDFIn embryo, before the establishment of acquired immunity, a variety of embryonic antigens like alpha-fetoprotein (AFP) are produced and secreted in the sera, which rapidly disappear after the birth. Such embryonic antigens sometimes reappear from various tumor cells and decrease in the case of remission, indicating embryonic antigens may alert immune system to control tumors. In the present study, to examine the evoked immune responses against the tumors expressing embryonic antigen, we administered AFP-gene-transfected EL4 cells into syngeneic C57BL/6 mice and established a killer line against the tumor cells.
View Article and Find Full Text PDF