Chem Pharm Bull (Tokyo)
December 2020
Various aromatic lactones have been synthesized and their regioselectivity (1,2-addition vs. 1,4- or 1,6-addition) investigated in reactions with organolithium species, particularly n-BuLi and sec-BuLi. The regioselectivity varied greatly depending on various factors, such as the bulkiness of both substrates and organolithium species, and types of solvent and cosolvent.
View Article and Find Full Text PDFThis paper describes a simple microfluidic device that can generate nonlinear concentration gradients. We changed the "width" of channels that can drastically shorten the total microfluidic channel length and simplify the microfluidic network design rather than the "length" of channels. The logarithmic concentration gradients generated by the device were in good agreement with those obtained by simulation.
View Article and Find Full Text PDFWe have developed a method to analyze the substrate transport of ATP-binding cassette (ABC) transporters, which are associated with drug resistance in tumor cells. Our microfluidic method is well suited to the single-vesicle estimation of substrate transport and the rapid drug screening of ABC transporters. Using this method, we have demonstrated, for the first time, the analysis of substrate transport by a single transporter and performed drug-inhibition experiments in less than 3 h.
View Article and Find Full Text PDFThis paper describes a methodology for the rapid and highly selective detection of cocaine using a membrane protein channel combined with a DNA aptamer. The DNA aptamer recognizes the cocaine molecule with high selectivity. We successfully detected a low concentration of cocaine (300 ng/mL, the drug test cutoff limit) within 60 s using a biological nanopore embedded in a microchip.
View Article and Find Full Text PDFMonitoring complex biological assays such as in vitro protein synthesis over long periods in micrometer-sized cavities of poly(dimethyl siloxane) (PDMS) microfluidic devices requires a strategy that solves the adsorption and absorption problems on PDMS surfaces. In this study, we developed a technique that instantaneously arrays aqueous microdroplets coated with a phospholipid membrane within a single microfluidic device. The simple lipid bilayer coating effectively inhibits the adsorption of proteins and DNA, whereas the encapsulation of the droplet reduces the area in contact with the PDMS surface, resulting in decreased absorption in part.
View Article and Find Full Text PDFA novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection.
View Article and Find Full Text PDFCell membrane lipids and proteins are heterogeneously distributed in the membrane plane. In recent years, much attention has been paid to the heterogeneous distribution of the lipid components, particularly the formation of cholesterol-rich domains that are thought to be important in signaling processes. This has led to renewed interest in the phase diagrams of complex lipid mixtures, such as three-component mixtures containing phospholipids and cholesterol.
View Article and Find Full Text PDFSphingosine and sphingosine 1-phosphate (S1P) are sphingolipid metabolites that act as signaling messengers to activate or inhibit multiple downstream targets to regulate cell growth, differentiation, and apoptosis. The amphiphilic nature of these compounds leads to aggregation above their critical micelle concentrations (CMCs), which may be important for understanding lysosomal glycosphingolipid storage disorders. We investigated the aggregation of sphingosine and S1P over a comprehensive, physiologically relevant range of pH values, ionic strengths, and lipid concentrations by means of dynamic light scattering, titration, and NMR spectroscopy.
View Article and Find Full Text PDFThe innate immune systems of humans and other animals are activated by lipopolysaccharides (LPS), which are glucosamine-based phospholipids that form the outer leaflet of the outer membranes of Gram-negative bacteria. Activation involves interactions of LPS with the innate immunity-receptor comprised of toll-like receptor 4 in complex with so-called MD-2 protein and accessory proteins, such as CD14 and LPS binding protein. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) Consortium has isolated in large amounts a nearly homogeneous LPS, Kdo(2)-Lipid A, and demonstrated that it activates macrophages via toll-like receptor 4.
View Article and Find Full Text PDFThe packing of lipid chains in bicelles was 5-9% less than that in mixed micelles at temperatures between 298 and 318 K. This reduction of packing that accompanied the formation of bicelles changed the spectroscopic character of reconstituted bacteriorhodopsin, as indicated by static absorption measurements.
View Article and Find Full Text PDF