Mitochondria contribute to cellular metabolism by providing a specialised milieu for energising cells by incorporating and processing the metabolites. However, heterogeneity between mitochondria has only partially been elucidated. Mitochondria dynamically alter their morphology and function during the life of an animal, when cells proliferate and grow.
View Article and Find Full Text PDFThe bottom-up construction of a living cell using non-living materials represents a grand challenge in science and technology. Reproduction of cells into similar offspring is key to life, and therefore, building a synthetic cell that can autonomously divide is one of the most fundamental tasks that need to be achieved in bottom-up synthetic biology. In this review, we summarize the strategies of inducing synthetic division by using physical, chemical, and biological stimuli, and highlight the future challenges to the construction of autonomous synthetic cell division.
View Article and Find Full Text PDFJ Membr Biol
February 2023
Pore-forming proteins (PFPs) are produced by various organisms, including pathogenic bacteria, and form pores within the target cell membrane. Streptolysin O (SLO) is a PFP produced by Streptococcus pyogenes and forms high-order oligomers on the membrane surface. In this prepore state, multiple α-helices in domain 3 of each subunit exist as unfolded structures and transiently interact with each other.
View Article and Find Full Text PDFOligosaccharyltransferase (OST) is a membrane-bound enzyme that catalyzes the transfer of oligosaccharide chains from lipid-linked oligosaccharides (LLO) to asparagine residues in polypeptide chains. Using high-speed atomic force microscopy (AFM), we investigated the dynamic properties of OST molecules embedded in biomembranes. An archaeal single-subunit OST protein was immobilized on a mica support via biotin-avidin interactions and reconstituted in a lipid bilayer.
View Article and Find Full Text PDFRevealing antibody-antigen interactions at the single-molecule level will deepen our understanding of immunology. However, structural determination under crystal or cryogenic conditions does not provide temporal resolution for resolving transient, physiologically or pathologically relevant functional antibody-antigen complexes. Here, we develop a triangular DNA origami framework with site-specifically anchored and spatially organized artificial epitopes to capture transient conformations of immunoglobulin Gs (IgGs) at room temperature.
View Article and Find Full Text PDFThe translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex at 3.8-Å resolution.
View Article and Find Full Text PDFThe cell-penetrating peptide, transportan 10 (TP10), can translocate across the plasma membrane of living cells and thus can be used for the intracellular delivery of biological cargo such as proteins. However, the mechanisms underlying its translocation and the delivery of large cargo remain unclear. In this report we investigated the entry of TP10 into a single giant unilamellar vesicle (GUV) and the TP10-induced leakage of fluorescent probes using the single GUV method.
View Article and Find Full Text PDFThe pore formation in lipid membranes induced by the antimicrobial peptide magainin 2 is considered to be the main cause for its bactericidal activity. To reveal the mechanism of the pore formation, it is important to elucidate the kinetic pathway of magainin 2-induced pore formation in lipid membranes. In this report, to examine the change in pore size over time during pore formation which can monitor its kinetic pathway, we investigated the rate of the leakage of various sized fluorescent probes through the magainin 2-induced pores in single giant unilamellar vesicles (GUVs) of 50% dioleoylphosphatidylglycerol (DOPG)/50% dioleoylphosphatidylcholine (DOPC) membrane.
View Article and Find Full Text PDF