Publications by authors named "Hirotada Mori"

Article Synopsis
  • tRNAs are essential for translation and need various modifications to work properly; researchers studied a model bacterium, K-12, to understand these modifications.
  • They conducted a synthetic lethal screen which uncovered 5 pairs of tRNA modifications that cannot coexist in certain conditions, and 15 pairs that cause growth issues when deleted together.
  • One specific gene responsible for modifying tRNAs showed the most significant impact on growth, revealing insights into how tRNA modifications influence quality control in cells.
View Article and Find Full Text PDF

Reuterin, a mixture of different forms of 3-hydroxypropanal (3-HPA), including HPA hydrate and HPA dimer, is an antimicrobial compound converted from glycerol by . Although its antimicrobial function may be related to its interaction with thiol groups, its temperature stability and effect on the gut environment remain unclear. The present study evaluated the antimicrobial effects and activity of reuterin against and .

View Article and Find Full Text PDF

Genetic instability of synthetic genetic devices is a key obstacle for practical use. This problem is particularly critical in kill-switches for conditional host killing. Here, we propose a genetically stable kill-switch based on a "demon and angel" expression construct of a toxic essential gene.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian gut microbes adapt to the intestinal environment and their composition is heavily influenced by the host's diet, which can alter nutrient profiles in the intestine.* -
  • Genetic mutations in a specific gut microbe species enhance their fitness in the intestinal tract, and this research discovered important mutations related to sugar metabolism soon after colonization in mice.* -
  • The study highlights that not only do these genetic changes improve the microbe's ability to use nutrients from the diet, but the host's diet also affects which mutations occur, shedding light on the adaptation mechanisms of gut bacteria.*
View Article and Find Full Text PDF

Nutritive symbiosis between bacteria and ticks is observed across a range of ecological contexts; however, little characterization on the molecular components responsible for this symbiosis has been done. Previous studies in our lab demonstrated that Rickettsia monacensis str. Humboldt (strain Humboldt) can synthesize folate de novo via the folate biosynthesis pathway involving folA, folC, folE, folKP, and ptpS genes.

View Article and Find Full Text PDF

K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications.

View Article and Find Full Text PDF

The SOS response is induced upon DNA damage and the inhibition of Z ring formation by the product of the gene, which is one of the LexA-regulated genes, allows time for repair of damaged DNA. On the other hand, severely DNA-damaged cells are eliminated from cell populations. Overexpression of leads to cell lysis, suggesting SulA eliminates cells with unrepaired damaged DNA.

View Article and Find Full Text PDF

Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics. Despite their prominent role in the recalcitrance of chronic infections to antibiotic therapy, the mechanism of their formation has remained elusive. We show that sorted cells of Escherichia coli with low levels of energy-generating enzymes are better able to survive antibiotic killing.

View Article and Find Full Text PDF

Metabolism of host-targeted drugs by the microbiome can substantially impact host treatment success. However, since many host-targeted drugs inadvertently hamper microbiome growth, repeated drug administration can lead to microbiome evolutionary adaptation. We tested if evolved bacterial resistance against host-targeted drugs alters their drug metabolism and impacts host treatment success.

View Article and Find Full Text PDF

The Gram-positive bacterium Bacillus subtilis plays important roles in both industrial applications and basic research. However, transformation of competent B. subtilis cells is more difficult to achieve compared with that of Escherichia coli.

View Article and Find Full Text PDF

ADP-glucose is the precursor of glycogen biosynthesis in bacteria, and a compound abundant in the starchy plant organs ingested by many mammals. Here we show that the enteric species Escherichia coli is capable of scavenging exogenous ADP-glucose for use as a glycosyl donor in glycogen biosynthesis and feed the adenine nucleotide pool. To unravel the molecular mechanisms involved in this process, we screened the E.

View Article and Find Full Text PDF

A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40 representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain in vitro. Particular classes, such as the chemically diverse antipsychotics, were overrepresented in this group.

View Article and Find Full Text PDF

Previous screening of a single-gene knockout library consisting of 3,908 disrupted-mutant strains allowed us to identify 51 thermotolerant genes that are essential for survival at a critical high temperature (CHT) in Escherichia coli [Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T, Oshima T, Ogasawara N, Yamada M (2011) PLoS ONE 6: e20063]. In this study, we identified another 21 thermotolerant genes. E.

View Article and Find Full Text PDF

A polyether antibiotic, ecteinamycin (1), was isolated from a marine Actinomadura sp., cultivated from the ascidian Ecteinascidia turbinata. C enrichment, high resolution NMR spectroscopy, and molecular modeling enabled elucidation of the structure of 1, which was validated on the basis of comparisons with its recently reported crystal structure.

View Article and Find Full Text PDF

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical.

View Article and Find Full Text PDF

Construction of a complex artificial self-replication system is challenging in the field of in vitro synthetic biology. Recently, we developed a translation-coupled RNA replication system, wherein an artificial genomic RNA replicates with the Qβ RNA replicase gene encoded on itself. The challenge is to introduce additional genes into the RNA to develop a complex system that mimics natural living systems.

View Article and Find Full Text PDF

Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes.

View Article and Find Full Text PDF

Tetracycline-inhibited ribosome profiling (TetRP) provides a powerful new experimental tool for comprehensive genome-wide identification of translation initiation sites in bacteria. We validated TetRP by confirming the translation start sites of protein-coding genes in accordance with the 2006 version of Escherichia coli K-12 annotation record (GenBank U000962) and found ∼150 new start sites within 60 nucleotides of the annotated site. This analysis revealed 72 per cent of the genes whose initiation site annotations were changed from the 2006 GenBank record to the newer 2014 annotation record (GenBank U000963), indicating a high sensitivity.

View Article and Find Full Text PDF

While genetic perturbation has been the conventional route to probing bacterial systems, small molecules are showing great promise as probes for cellular complexity. Indeed, systematic investigations of chemical-genetic interactions can provide new insights into cell networks and are often starting points for understanding the mechanism of action of novel chemical probes. We have developed a robust and sensitive platform for chemical-genomic investigations in bacteria.

View Article and Find Full Text PDF

E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E.

View Article and Find Full Text PDF

Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium.

View Article and Find Full Text PDF

Background: There is a significant difference between synonymous codon usage in many organisms, and it is known that codons used more frequently generally showed efficient decoding rate. At the gene level, however, there are conflicting reports on the existence of a correlation between codon adaptation and translation efficiency, even in the same organism.

Results: To resolve this issue, we cultured Escherichia coli under conditions designed to maintain constant levels of mRNA and protein and subjected the cells to ribosome profiling (RP) and mRNA-seq analyses.

View Article and Find Full Text PDF

Background: Moonlighting proteins perform two or more cellular functions, which are selected based on various contexts including the cell type they are expressed, their oligomerization status, and the binding of different ligands at different sites. To understand overall landscape of their functional diversity, it is important to establish methods that can identify moonlighting proteins in a systematic fashion. Here, we have developed a computational framework to find moonlighting proteins on a genome scale and identified multiple proteomic characteristics of these proteins.

View Article and Find Full Text PDF

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12.

View Article and Find Full Text PDF