Publications by authors named "Hirotada Hirama"

Nanoparticle (NP) concentration is crucial for liquid biopsies and analysis, and various NP concentrators (NPCs) have been developed. Methods using ion concentration polarization (ICP), an electrochemical phenomenon based on NPCs consisting of microchannels, have attracted attention because samples can be non-invasively concentrated using devices with simple structures. The fabrication of such NPCs is limited by the need for lithography, requiring special equipment and time.

View Article and Find Full Text PDF

Nanoparticles (NPs) are used in various medicinal applications. Exosomes, bio-derived NPs, are promising biomarkers obtained through separation and concentration from body fluids. Polydimethylsiloxane (PDMS)-based microchannels are well-suited for precise handling of NPs, offering benefits such as high gas permeability and low cytotoxicity.

View Article and Find Full Text PDF

The use of organ-on-a-chip (OOC) devices is a promising alternative to existing cell-based assays and animal testing in drug discovery. A rapid prototyping method with polydimethylsiloxane (PDMS) is widely used for developing OOC devices. However, because PDMS tends to absorb small hydrophobic molecules, the loss of test compounds in cell-based assays and increases in background fluorescence during observation often lead to biased results in cell-based assays.

View Article and Find Full Text PDF

This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle.

View Article and Find Full Text PDF

In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed.

View Article and Find Full Text PDF

We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel.

View Article and Find Full Text PDF

We present a lithography-free procedure for fabricating intrinsically three-dimensional smooth-walled microchannels within poly(dimethylsiloxane) (PDMS) elastomer using hydrogel molds. In the fabrication process, small pieces of agarose gel ("wires" or "chips") are embedded in uncured PDMS composite, arranged in the shape of the desired microchannels, and used as molds to form the microchannels. The point of the process is that molds for creating junctions of microchannels such as T-junctions or cross-junctions can be robustly formed by simply grafting gel wires in uncured PDMS composite without using adhesive agents.

View Article and Find Full Text PDF