Publications by authors named "Hirosuke Oku"

In the previous report, we reported that originating from the rhizome of was known to produce a marine-derived natural product. An OSMAC-based approach was designed by modifying the nutritional composition of the growth medium to investigate any possible new metabolites produced by the strain. The culture filtrate and biomass were conditioned through the use of three basal media, namely, Czapek-dox, potato dextrose, and Wickerham broth medium.

View Article and Find Full Text PDF

The most widely used isoprene emission algorithm, G93 formula, estimates instantaneous leaf-level isoprene emission using the basal emission factor and light and temperature dependency parameters. The G93 parameters have been suggested to show variation depending on past weather conditions, but no study has closely examined the relationship between past meteorological data and the algorithm parameters. Here, to examine the influence of the past weather on these parameters, we monitored weather conditions, G93 parameters, isoprene synthase transcripts and protein levels, and MEP pathway metabolites in the tropical tree for 12 days and analyzed their relationship with cumulative temperature and light intensity.

View Article and Find Full Text PDF

Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from Results showed that SP with IC of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.

View Article and Find Full Text PDF

Brown algae contain a polysaccharide-rich cell wall, mainly composed of alginate and fucoidan which have been extensively studied for their individual structure and bioactivities. Particularly, the cell wall of Cladosiphon okamuranus is rich in fucoidan rather than alginate. However, little is known about its arrangement or interlinking with other polysaccharides such as cellulose in the cell wall.

View Article and Find Full Text PDF

The isoprene emission rate from plants is simulated by a function of light intensity and leaf temperature, and the G-93 formula is the most extensively applied algorithm for this purpose. Isoprene is biosynthesized by the enzyme isoprene synthase (IspS), and instantly emitted from the leaf. Enzyme kinetics of IspS and substrate availability are important factors involved in the short-term leaf-level control of isoprene emissions.

View Article and Find Full Text PDF

Shiikuwasha (Citrus depressa Hayata) essential oil (SEO) extracted from Shiikuwasha fruit pulp contains two major volatile components, limonene and γ-terpinene (56.56-57.31 and 24.

View Article and Find Full Text PDF

Leucaena leucocephala growing in the tropics and subtropics serves as potential forage for livestock because its foliage is rich in protein, fiber, and minerals. However, its use for livestock feed has been hindered by toxic nonprotein amino acid mimosine. Therefore, it is necessary to develop a method to reduce or eliminate mimosine from foliage.

View Article and Find Full Text PDF

It has been suggested that isoprene synthesis by isoprene synthase (IspS) proceeds via a substrate-assisted mechanism. The authors observed a non-enzymatic isoprene formation by Mn, which represents the basis of IspS enzyme reaction. Because IspS and many other terpene synthases require Mn metal ions as cofactor, this study characterized the formation reaction for the first time.

View Article and Find Full Text PDF

Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (C, C, and α), growth temperature and light intensity, photosynthesis (ɸ, P), isoprene synthase (IspS) level, and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves.

View Article and Find Full Text PDF

Facultative halophyte plants were exposed to mild (1.5% NaCl) and severe (3% NaCl) salt stress with or without sodium nitroprusside (SNP; 100 µM; a NO donor), hemoglobin (Hb, 100 µM; a NO scavenger), or Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM; a NO synthase inhibitor). The plants were significantly affected by severe salt stress.

View Article and Find Full Text PDF

A. GRAY is a wild perennial herb, and its roots (CbR) have traditionally been used as both food and medicine on the Japanese islands of Okinawa and Amami. The present study evaluated the antiadipogenic effect of CbR using mouse embryonic fibroblast cell line 3T3-L1 from JCRB cell bank.

View Article and Find Full Text PDF

Dihydropyranocoumarins (DPCs) were isolated from Thunb as anti-obesity compounds in 3T3-L1 adipocytes assay; however, it is uncertain whether DPC exerts anti-obesity activity in vivo. Therefore, this study evaluated the oral intake of pure DPCs in mice fed a high-fat diet, and also attempted to enhance its activity by nanoparticulation. Increases in body weight gain and fat accumulation in white adipose tissues were significantly suppressed by the dietary intake of DPCs (1.

View Article and Find Full Text PDF

Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame the decameric cysteine synthase complex. The isoforms of OASTL are found in three compartments of the cell: the cytosol, plastid, and mitochondria. In this investigation, we first isolated putative chloroplastic OASTL (Ch-OASTL) from Leucaena leucocephala, and the Ch-OASTL was then expressed in BL21-competent Escherichia coli.

View Article and Find Full Text PDF

Mimosinase degrades the non-protein amino acid mimosine and is thought to have evolved from cystathionine β-lyase (CBL) via gene duplication. However, no study has, to date, compared the molecular characteristics of mimosinase and CBL. We therefore cloned mimosinase and CBL from the Mimosoideae subfamily member Mimosa pudica (Mp) and explored the molecular relationship between mimosinase and CBL for the first time.

View Article and Find Full Text PDF

Purpose: Oxycholesterols (OCs) are produced from cholesterol by oxidation of the steroidal backbone and side-chain. OCs are present in blood and evidence suggests their involvement in disease development and progression. However, limited information is available regarding the absorption mechanisms and relative absorption rates of dietary OCs.

View Article and Find Full Text PDF

Plant hormones and the circadian rhythm have been implicated in coordinated control of isoprene emission in plants. To gain insights into the signalling networks, foliar application of plant hormones was conducted in a native emitter, Ficus septica. Spraying of 50 μM jasmonic acid (JA) gradually decreased isoprene emission by 88% compared with initial levels within 5 days, and emission increased after relief from JA application.

View Article and Find Full Text PDF

Isoprene is emitted by many plants and is thought to function as an antioxidant under stressful conditions. However, the detailed regulatory mechanism of isoprene emission in relation to the antioxidant system remains unclear. Therefore, in this study, we explored the molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica Burm.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat ( L. cv.

View Article and Find Full Text PDF

In higher plants, multiple copies of the cysteine synthase gene are present for cysteine biosynthesis. Some of these genes also have the potential to produce various kinds of β-substitute alanine. In the present study, we cloned a 1275-bp cDNA for cytosolic O-acetylserine(thiol)lyase (cysteine synthase) (Cy-OASTL) from Leucaena leucocephala.

View Article and Find Full Text PDF

To investigate the physiological and biochemical mechanisms of nitric oxide (NO)-induced paraquat (PQ) tolerance in plants, we pretreated a set of 10-day-old Brassica napus seedlings with 500 μM sodium nitroprusside (SNP - a NO donor) for 24 h. Then, three doses of PQ (62.5, 125 and 250 μM) were applied separately, as well as to SNP-pretreated seedlings, and the seedlings were allowed to grow for an additional 48 h.

View Article and Find Full Text PDF

This study examined the effect of triterpenoid on the salt tolerance of lanosterol synthase deficient yeast mutant GIL77. The expression of the triterpenoid synthase gene under promoter in GIL77 increased the triterpenoid concentration of both whole cell and plasma membrane fractions. Without the induction of the genes, the growth curve of or transformant depicted patterns similar to control cells in both the presence and absence of salt with growth inhibition at 500 mM NaCl.

View Article and Find Full Text PDF

In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine.

View Article and Find Full Text PDF

We identified a nitidine- (NTD-) accumulating organelle and evaluated the net cytotoxicity of accumulated NTD. To evaluate tumor cell selectivity of the drug, we evaluated its selective cytotoxicity against 39 human cancer cell lines (JFCR39 panel), and the profile was compared with those of known anticancer drugs. Organelle specificity of NTD was visualized using organelle-targeted fluorescent proteins.

View Article and Find Full Text PDF

Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress.

View Article and Find Full Text PDF