The discharge of high-strength oily wastewater adversely affects the environment; therefore, the treatment of wastewater containing fats, oils, and grease from the food industry is of importance. In this study, we used a membrane bioreactor (MBR) to treat Ramen noodle-soup wastewater, and we evaluated the optimal oil concentration in the wastewater for the startup of the MBR treatment in winter and summer. The MBR system had a sufficient startup in both seasons when fed with a 20-fold dilution of the original oily wastewater, containing approximately 950 to 1,200 mg/L oil and approximately 3,000 to 4,400 mg/L biological oxygen demand (BOD; BOD-SS load of 0.
View Article and Find Full Text PDFPopulation shifts in the activated sludge microbiome of a membrane bioreactor (MBR) during the treatment of Ramen noodle-soup wastewater were analyzed by high-throughput sequencing. An MBR underwent stable treatment of wastewater containing increasing oil concentrations (from 135 to 1,350 mg/L) for 26 days; however, after feeding with wastewater containing 2,700 mg/L of oil, the mixed liquor suspended solids and transmembrane pressure exhibited gradual and rapid increases, respectively, leading to clogging of the membrane. Phylogenetic analysis revealed an oil supply-dependent increase in the abundance of Cupriavidus gilardii (relative abundance of 26.
View Article and Find Full Text PDFIn biological wastewater treatment, municipal wastewater sometimes undergoes unexpected changes in physicochemical parameters, such as organic carbon concentration. The aim of this study was to understand how microbial communities in activated sludge in a membrane bioreactor (MBR) adapt to high organic loading and maintain their degradation ability during reactor operation. A pilot-scale MBR was operated for 19 days.
View Article and Find Full Text PDFTo prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.
View Article and Find Full Text PDFThe aim of this research was the application of a two-stage electrodialysis (ED) method for glyceric acid (GA) recovery from fermentation broth. First, by desalting ED, glycerate solutions (counterpart is Na+) were concentrated using ion-exchange membranes, and the glycerate recovery and energy consumption became more efficient with increasing the initial glycerate concentration (30 to 130 g/l). Second, by water-splitting ED, the concentrated glycerate was electroconverted to GA using bipolar membranes.
View Article and Find Full Text PDFGlyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
August 2009
Gluconobacter sp. NBRC3259 converted glycerol to glyceric acid (GA). The enantiomeric composition of the GA produced was a mixture of DL-forms with a 77% enantiomeric excess of D-GA.
View Article and Find Full Text PDFLipase-catalyzed acetylation of 2-alkanol with vinyl acetate has been studied kinetically using Burkholderia cepacia lipase (BCL), enantiomerically pure (R)- and (S)-2-alkanols and different organic solvents. The rate equation was derived by the steady state method for the simplified mechanism. The second order rate constants (k(R) and k(S)) for (R)- and (S)-2-alkanols were evaluated from the slopes of the double reciprocal plots, v(-1) vs.
View Article and Find Full Text PDFThe lipase-catalyzed acetylation of 2-alkanol with vinyl acetate was studied using Burkholderia cepacia lipase (BCL), three alcohol and three organic solvents in a packed-bet reactor with a recycling system (flow method). The optical resolution data were found in agreement with those of the batch method in which BCL was suspended in the substrate solution. Repeated reaction results clearly indicated BCL in the packed-bed to be quite stable and to be usable for at least 50 reaction runs or to remain effective for as long as two months in the water-insoluble solvents such as hexane and 1,2-dichloroethane.
View Article and Find Full Text PDFA carbohydrate ligand system has been developed which is composed of self-assembled monolayers (SAMs) of mannosylerythritol lipid-A (MEL-A) from Pseudozyma antarctica, serving for human immunoglobulin G and M (HIgG and HIgM). The estimated binding constants from surface plasmon resonance (SPR) measurement were Ka = 9.4 x 10(6) M(-1) for HIgG and 5.
View Article and Find Full Text PDFSelf-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2005
Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.
View Article and Find Full Text PDFThree mannosylerythritol lipids (MEL-A, -B, and -C), yeast glycolipid biosurfactants, were independently attached to poly (2-hydroxyethyl methacrylate) beads (PHEMA), and the three obtained MEL-PHEMA composites were examined for their binding affinity to human immunoglobulin G (HIgG). Of the three composites, the composite bearing MEL-A exhibited the highest binding capacity for HIgG. The binding amount of HIgG increased with increased applied concentration, reaching 106 mg HIgG (per g of composite), with a binding yield of 81%.
View Article and Find Full Text PDFThe successful preparation of TiO2-montmorillonite mesoporous composites using intercalation of titanium isopropoxide dissolved in supercritical carbon dioxide involved ion exchange of interlayer cations by hydrophobic cations.
View Article and Find Full Text PDF