Publications by authors named "Hiroshi Uji-I"

Photochemical reactions enable the synthesis of energetically unfavorable compounds but often require irradiation with ultraviolet light, which potentially induces side reactions. Here, cavity strong coupling enhances the efficiency of an all-solid state photocyclization in crystals of 2,4-dimethoxy-β-nitrostyrene under irradiation with visible light. The exposure to visible light facilitates photocyclization by the transition to a lower polaritonic state, which is energetically lower than the original transition state.

View Article and Find Full Text PDF

Chemistry has traditionally focused on the synthesis of desired compounds, with organic synthesis being a key method for obtaining target molecules. In contrast, self-assembly -where molecules spontaneously organize into well-defined structures- has emerged as a powerful tool for fabricating intricate structures. Self-assembly was initially studied in biological systems but has been developed for synthetic methods, leading to the field of supramolecular chemistry, where non-covalent interactions/bonds guide molecular assembly.

View Article and Find Full Text PDF

Optical cavity/molecule strong coupling offers attractive opportunities to modulate photochemical or photophysical processes. When atoms or molecules are placed in an optical cavity, they can coherently exchange photonic energy with optical cavity vacuum fields, entering the strong coupling interaction regime. Recent work suggests that the thermodynamic and kinetic properties of molecules can be significantly changed by strong coupling, resulting in the emergence of intriguing photochemical and photophysical phenomena.

View Article and Find Full Text PDF
Article Synopsis
  • Coke formation on catalysts leads to deactivation by blocking surfaces needed for reactions, posing a challenge in various industrial chemical processes.
  • The study introduces tip-enhanced Raman spectroscopy (TERS) to identify and localize coke deposits on metal nanocatalysts, providing in-depth insights that conventional methods miss.
  • Findings reveal diverse types of coke at nanoscale locations, uneven distribution on catalysts, and suggest that improved rejuvenation methods could enhance catalyst longevity by better managing coke buildup.
View Article and Find Full Text PDF

Tip-enhanced photoluminescence (TEPL) microscopy allows for the correlation of scanning probe microscopic images and photoluminescent spectra at the nanoscale level in a similar way to tip-enhanced Raman scattering (TERS) microscopy. However, due to the higher cross-section of fluorescence compared to Raman scattering, the diffraction-limited background signal generated by far-field excitation is a limiting factor in the achievable spatial resolution of TEPL. Here, we demonstrate a way to overcome this drawback by using remote excitation TEPL (RE-TEPL).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers introduced covalently patterned graphene using acetic acid as a promising candidate for graphene-enhanced Raman scattering (GERS).
  • Rhodamine 6G molecules in contact with the modified graphene demonstrate a significant enhancement (around 25 times) in Raman signal compared to the unmodified areas at 532 nm excitation.
  • The study also explores how factors such as the thickness of the molecules, the wavelength of excitation, and the types of covalently attached groups affect GERS enhancement.
View Article and Find Full Text PDF

Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production.  The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs.

View Article and Find Full Text PDF

The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes.

View Article and Find Full Text PDF

Arginine-rich dipeptide repeat proteins (R-DPRs), poly(PR) and poly(GR), translated from the hexanucleotide repeat expansion in the amyotrophic lateral sclerosis (ALS)-causative gene, contribute significantly to pathogenesis of ALS. Although both R-DPRs share many similarities, there are critical differences in their subcellular localization, phase separation, and toxicity mechanisms. We analyzed localization, protein-protein interactions, and phase separation of R-DPR variants and found that sufficient segregation of arginine charges is necessary for nucleolar distribution.

View Article and Find Full Text PDF

Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells.

View Article and Find Full Text PDF

We report an efficient photo-induced covalent modification (PICM) of graphene by short-chain fatty acids (SCFAs) with an alkyl chain at the liquid-solid interface for spatially resolved chemical functionalization of graphene. Light irradiation on monolayer graphene under an aqueous solution of the SCFAs with an alkyl chain efficiently introduces sp-hybridized defects, where the reaction rates of PICM are significantly higher than those in pure water. Raman and IR spectroscopy revealed that a high density of methyl, methoxy, and acetate groups is covalently attached to the graphene surface while it was partially oxidized by other oxygen-containing functional groups, such as OH and COOH.

View Article and Find Full Text PDF

Tip-enhanced Raman scattering (TERS) microscopy is an advanced technique for investigation at the nanoscale that provides topographic and chemical information simultaneously. The TERS probe plays a crucial role in the microscopic performance. In the recent past, the development of silver nanowire (AgNW) based TERS probes solved the main tip fabrication issues, such as low mechanical strength and reproducibility.

View Article and Find Full Text PDF

Membrane-less organelles (MLOs) are formed by biomolecular liquid-liquid phase separation (LLPS). Proteins with charged low-complexity domains (LCDs) are prone to phase separation and localize to MLOs, but the mechanism underlying the distributions of such proteins to specific MLOs remains poorly understood. Recently, proteins with Arg-enriched mixed-charge domains (R-MCDs), primarily composed of R and Asp (D), were found to accumulate in nuclear speckles via LLPS.

View Article and Find Full Text PDF

Site-selective chemistry opens new paths for the synthesis of technologically important molecules. When a reactant is placed inside a Fabry-Perot (FP) cavity, energy exchange between molecular vibrations and resonant cavity photons results in vibrational strong coupling (VSC). VSC has recently been implicated in modified chemical reactivity at specific reactive sites.

View Article and Find Full Text PDF

We report a facile all-optical method for spatially resolved and reversible chemical modification of a graphene monolayer. A tightly focused laser on graphene under water introduces an sp-type chemical defect by photo-oxidation. The sp-type defects can be reversibly restored to sp carbon centers by the same laser with higher intensity.

View Article and Find Full Text PDF

Organic materials have attracted considerable attention in nonlinear optical (NLO) applications as they have several advantages over inorganic materials, including high NLO response, and fast response time as well as low-cost and easy fabrication. Lithium-containing C (Li@C) is promising for NLO over other organic materials because of its strong NLO response proven by theoretical and experimental studies. However, the low purity of Li@C has been a bottleneck for applications in the fields of solar cells, electronics and optics.

View Article and Find Full Text PDF
Article Synopsis
  • Tip-enhanced Raman scattering (TERS) microscopy is a cutting-edge method for nanoscale investigations, noted for being label-free and non-invasive while delivering both topographic and chemical details.
  • Traditional AFM-TERS probes using metal deposits face challenges with reproducibility and lifetime, leading researchers to develop silver nanowire (AgNW) probes that perform better but still suffer from oxidation issues.
  • This study introduces an Au coating method to enhance the longevity and performance of AgNW probes, showing that Au-coated AgNWs achieved improved signal quality and stability over time, enabling extended use for TERS mappings.
View Article and Find Full Text PDF

The application of antibodies in nanomedicine is now standard practice in research since it represents an innovative approach to deliver chemotherapy agents selectively to tumors. The variety of targets or markers that are overexpressed in different types of cancers results in a high demand for antibody conjugated-nanoparticles, which are versatile and easily customizable. Considering up-scaling, the synthesis of antibody-conjugated nanoparticles should be simple and highly reproducible.

View Article and Find Full Text PDF

Invited for the cover of this issue are Daisuke Tanaka at Kwansei Gakuin University and co-workers at Kwansei Gakuin University, Hokkaido University, Kyoto University, Japan and KU Leuven, Belgium. The image is a depiction of exploring the desired crystal by decision tree analysis. Read the full text of the article at 10.

View Article and Find Full Text PDF

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational modes of solvents to cavity vacuum fields can influence the chemical reaction kinetics of dissolved solutes. This suggests that vibrational strong coupling might also effect other important solution-based processes, such as crystallization from solution.

View Article and Find Full Text PDF

Novel metal-organic frameworks containing lanthanide double-layer-based secondary building units (KGF-3) were synthesized by using machine learning (ML). Isolating pure KGF-3 was challenging, and the synthesis was not reproducible because impurity phases were frequently obtained under the same synthetic conditions. Thus, dominant factors for the synthesis of KGF-3 were identified, and its synthetic conditions were optimized by using two ML techniques.

View Article and Find Full Text PDF
Article Synopsis
  • - Our group has developed a new method using silver nanowires (AgNWs) as non-invasive endoscopic probes to detect signals inside cells, but it currently only works with specialized tools, limiting its use.
  • - We propose an improved strategy to enhance these probes' capabilities by forming gold structures on the AgNW's surface, which increases light coupling points and improves signal efficiency for Raman scattering.
  • - The effectiveness of these modified probes is demonstrated by accurately detecting specific dyes within cell compartments, showcasing their potential for studying drug interactions and cellular structures.
View Article and Find Full Text PDF

We developed adaptive optical (AO) two-photon excitation microscopy by introducing a spatial light modulator (SLM) in a commercially available microscopy system. For correcting optical aberrations caused by refractive index (RI) interfaces at a specimen's surface, spatial phase distributions of the incident excitation laser light were calculated using 3D coordination of the RI interface with a 3D ray-tracing method. Based on the calculation, we applied a 2D phase-shift distribution to a SLM and achieved the proper point spread function.

View Article and Find Full Text PDF

Correction for 'FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery' by Farsai Taemaitree et al., Nanoscale, 2020, 12, 16710-16715, DOI: 10.1039/D0NR04910G.

View Article and Find Full Text PDF

Defects influence the properties of metal-organic frameworks (MOFs), such as their storage amount and the diffusion kinetics of gas molecules. However, the spatial distribution of defects is still poorly understood due to a lack of visualization methods. Here, we present a new method using nonlinear optics (NLO) that allows the visualization of defects within MOFs.

View Article and Find Full Text PDF