Publications by authors named "Hiroshi Sakane"

Lysosome-associated membrane protein-1 and -2 (LAMP-1 and LAMP-2, respectively) are type I transmembrane proteins. LAMP-2 comprises three splice isoforms (LAMP-2A, -B and-C) with different cytoplasmic tails (CTs). These three CTs possess different tyrosine-based motifs (GYXXΦ, where Φ is a bulky hydrophobic amino acid) at their C-termini.

View Article and Find Full Text PDF

In clathrin-independent endocytosis, Hook1, a microtubule- and cargo-tethering protein, participates in sorting of cargo proteins such as CD98 (encoded by SLC3A2) and CD147 (encoded by BSG) into recycling endosomes. However, the molecular mechanism that regulates Hook1-mediated endosomal sorting is not fully understood. In the present study, we found that γ-taxilin is a novel regulator of Hook1-mediated endosomal sorting.

View Article and Find Full Text PDF

Lysosomal integral membrane protein-2 (LIMP-2) is a type III transmembrane protein that is highly glycosylated and mainly localized to the lysosomal membrane. The diverse functions of LIMP-2 are currently being uncovered; however, its participation in macroautophagy, usually described as autophagy, has not yet been well-investigated. To determine the possible involvement of LIMP-2 in autophagic activity, we examined the intracellular amount of microtubule-associated protein 1 light chain 3 (LC3)-II, which is well-correlated with autophagosome levels, in exogenous rat LIMP-2-expressing COS7 and HEK293 cells.

View Article and Find Full Text PDF

Lysosomes are organelles that play a crucial role in the degradation of endocytosed molecules, phagocytosed macromolecules and autophagic substrates. The membrane of lysosomes contains several highly glycosylated membrane proteins, and lysosome-associated membrane protein (LAMP)-1 and LAMP-2 account for a major portion of the lysosomal membrane glycoproteins. Although it is well known that LAMP-2 deficiency causes Danon disease, which is characterized by cardiomyopathy, myopathy and mental retardation, the roles of lysosomal membrane proteins including LAMP-1 and LAMP-2 in myogenesis are not fully understood.

View Article and Find Full Text PDF

Never in mitosis A-related kinase 2A (Nek2A), a centrosomal serine/threonine kinase, is involved in mitotic progression by regulating the centrosome cycle. Particularly, Nek2A is necessary for dissolution of the intercentriole linkage between the duplicated centrosomes prior to mitosis. Nek2A activity roughly parallels its cell cycle-dependent expression levels, but the precise mechanism regulating its activity remains unclear.

View Article and Find Full Text PDF

Myogenesis is required for the development of skeletal muscle. Accumulating evidence indicates that the expression of several genes are upregulated during myogenesis and these genes play pivotal roles in myogenesis. However, the molecular mechanism underlying myogenesis is not fully understood.

View Article and Find Full Text PDF

Background: Tumor susceptibility gene 101 (TSG101) was initially identified in fibroblasts as a tumor suppressor gene but subsequent studies show that TSG101 also functions as a tumor-enhancing gene in some epithelial tumor cells. Although previous studies have unraveled diverse biological functions of TSG101, the precise mechanism by which TSG101 is involved in carcinogenesis and tumor progression in a bidirectional and multifaceted manner remains unclear.

Methods: To reveal the mechanism underlying bidirectional modulation of cell invasion by TSG101, we used RNA interference to examine whether TSG101 depletion bidirectionally modulated matrix metalloproteinase (MMP)-9 expression in different cell types.

View Article and Find Full Text PDF

Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear.

View Article and Find Full Text PDF

α-Taxilin, a binding partner of the syntaxin family, is a candidate tumor marker. To gain insight into the physiological role of α-taxilin in normal tissues, we examined α-taxilin expression by Western blot and performed immunochemical analysis in the murine gastrointestinal tract where cell renewal vigorously occurs. α-Taxilin was expressed in the majority of the gastrointestinal tract and was prominently expressed in epithelial cells positive for Ki-67, a marker of actively proliferating cells.

View Article and Find Full Text PDF

Wnts are glycan- and lipid-modified morphogens that are important for cellular responses, but how Wnts are secreted in polarized epithelial cells remains unclear. Although Wntless (Wls) has been shown to interact with Wnts and support their secretion, the role of Wls in the sorting of Wnts to the final destination in polarized epithelial cells have not been clarified. Glycosylation was shown to be important for the sorting of some transmembrane and secreted proteins, but glycan profiles and their roles in the polarized secretion of Wnts has not yet been demonstrated.

View Article and Find Full Text PDF

ArfGAPs, GTPase-activating proteins for Arf small GTPases, are involved in multiple steps of vesicle formation of various transport pathways. Amphipathic lipid-packing sensor (ALPS) motif was first identified in the C-terminal regions of ArfGAP1 and its yeast homologue Gcs1p as a region that adsorbs preferentially onto highly curved membranes by folding into an amphipathic α-helix (AH). We previously showed that Gcs1p functionally interacted with the phospholipid flippase Cdc50p-Drs2p in the early endosome-to-TGN retrieval pathway.

View Article and Find Full Text PDF

Glypicans are members of the heparan sulfate proteoglycans (HSPGs) and are involved in various growth factor signaling mechanisms. Although HSPGs affect the β-catenin-dependent and -independent pathways of Wnt signaling, how they regulate distinct Wnt pathways is not clear. It has been suggested that the β-catenin-dependent pathway is initiated through receptor endocytosis in lipid raft microdomains and the independent pathway is activated through receptor endocytosis in non-lipid raft microdomains.

View Article and Find Full Text PDF

Wnt5a is a representative ligand that activates the β-catenin-independent pathway in Wnt signaling. It was reported that the expression of Wnt5a in human gastric cancer is associated with aggressiveness and poor prognosis and that knockdown of Wnt5a reduces the ability of gastric cancer cells to metastasize in nude mice. Therefore, Wnt5a and its signaling pathway might be important targets for the therapy of gastric cancer.

View Article and Find Full Text PDF

Beta-catenin-mediated Wnt signaling is crucial in animal development and tumor progression. The phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), a single-span transmembrane Wnt receptor, plays a vital role in this signaling. Dickkopf1 (Dkk1) has been shown to inhibit the Wnt-beta-catenin pathway, but the mechanism is not yet clear.

View Article and Find Full Text PDF

Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the beta-catenin-independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this action.

View Article and Find Full Text PDF

Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin.

View Article and Find Full Text PDF

Drs2p, the catalytic subunit of the Cdc50p-Drs2p putative aminophospholipid translocase, has been implicated in conjunction with the Arf1 signaling pathway in the formation of clathrin-coated vesicles (CCVs) from the TGN. Herein, we searched for Arf regulator genes whose mutations were synthetically lethal with cdc50Delta, and identified the Arf GAP gene GCS1. Most of the examined transport pathways in the Cdc50p-depleted gcs1Delta mutant were nearly normal, including endocytic transport to vacuoles, carboxypeptidase Y sorting, and the processing and secretion of invertase.

View Article and Find Full Text PDF

A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjpslf8gdcspb1icc8q3774354h6785lh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once