An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFProtein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor.
View Article and Find Full Text PDFTargeted protein degradation by small molecules is an emerging modality with significant potential for drug discovery. We previously developed chimeric molecules, termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which induce the ubiquitylation and proteasomal degradation of target proteins. This degradation is mediated by the IAPs; the target proteins include bromodomain-containing protein 4 (BRD4), an epigenetic regulator protein.
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) is characterized by the oncogenic fusion protein, BCR-ABL protein kinase, against which clinically useful inhibitors have been developed. An alternative approach to treat CML is to degrade the BCR-ABL protein. Recently, potent degraders against BCR-ABL have been developed by conjugating dasatinib to ligands for E3 ubiquitin ligases.
View Article and Find Full Text PDFAberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins.
View Article and Find Full Text PDFProtein degradation technology based on hybrid small molecules is an emerging drug modality that has significant potential in drug discovery and as a unique method of post-translational protein knockdown in the field of chemical biology. Here, we report the first example of a novel and potent protein degradation inducer that binds to an allosteric site of the oncogenic BCR-ABL protein. BCR-ABL allosteric ligands were incorporated into the SNIPER (Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers) platform, and a series of biological assays of binding affinity, target protein modulation, signal transduction, and growth inhibition were carried out.
View Article and Find Full Text PDFTargeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR).
View Article and Find Full Text PDFChromosomal translocation occurs in some cancer cells, which results in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate the BCR-ABL protein.
View Article and Find Full Text PDFWe previously developed a hybrid small molecule SNIPER (Specific and Nongenetic IAP-dependent Protein ERaser) against transforming acidic coiled-coil-3 (TACC3), SNIPER(TACC3), that induces proteasomal degradation of TACC3 protein. In this study, we found that SNIPER(TACC3) induces cytoplasmic vacuolization derived from endoplasmic reticulum (ER) and paraptosis-like cell death selectively in cancer cells. Mechanistic analysis suggests that accumulation of ubiquitylated protein aggregates that requires X-linked inhibitor of apoptosis protein (XIAP) induces ER stress, which results in ER-stress responses involving X-box binding protein-1 (XBP-1) and ER-derived vacuolization in cancer cells.
View Article and Find Full Text PDFMany diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation.
View Article and Find Full Text PDFOn the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE).
View Article and Find Full Text PDFMatrix metalloproteinase-13 (MMP-13), a member of the collagenase family of enzymes, has been implicated to play a key role in the pathology of osteoarthritis. Recently, we have reported the discovery of a series of quinazoline-2-carboxamide based non-zinc-binding MMP-13 selective inhibitors, as exemplified by compound 1. We then continued our research of a novel class of zinc-binding inhibitors to obtain follow-up compounds with different physicochemical, pharmacokinetic, and biological activity profiles.
View Article and Find Full Text PDFMatrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs.
View Article and Find Full Text PDFOn the basis of X-ray co-crystal structures of matrix metalloproteinase-13 (MMP-13) in complex with its inhibitors, our structure-based drug design (SBDD) strategy was directed to achieving high affinity through optimal protein-ligand interaction with the unique S1″ hydrophobic specificity pocket. This report details the optimization of lead compound 44 to highly potent and selective MMP-13 inhibitors based on fused pyrimidine scaffolds represented by the thienopyrimidin-4-one 26c. Furthermore, we have examined the release of collagen fragments from bovine nasal cartilage in response to a combination of IL-1 and oncostatin M.
View Article and Find Full Text PDF