Herein, we report the synthesis and properties of triptycene-based C- and C-symmetric stable triradicals. SQUID magnetometry showed the propeller-shaped triradicals were both an antiferromagnetic equilateral triangle spin system with small spin-spin interactions J/k~-120 K and -106 K, leading to ca. 4/6 coexistence of the doublet/quartet states in thermal equilibrium at room temperature.
View Article and Find Full Text PDFOrganic molecules with an aggregation-induced emission (AIE) property have been attracting much attention from the viewpoint of application to solid state emissive materials. For the AIE mechanism, quantum mechanical studies proposed the restriction of the intramolecular motion (RIM) model with the contribution of the conical intersection (CI) and deduced the importance of the restricted access to a conical intersection (RACI) in the potential energy surface (PES). Although these theoretical studies have contributed to the elucidation of AIE phenomena, direct detection of the reaction dynamics is indispensable to clarify the actual PES and the deactivation mechanism.
View Article and Find Full Text PDFUnderstanding physicochemical property changes based on reaction kinetics is required to design materials exhibiting desired functions at arbitrary timings. In this work, we investigated the photodimerization of anthracene derivatives in single crystals. Single crystals of 9-cyanoanthracene (9CA) and 9-anthraldehyde (9AA) exhibited reaction front propagation on the optical length scale, while 9-methylanthracene and 9-acetylanthracene crystals underwent spatially homogeneous conversion.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are fragments of graphene that have attracted considerable attention as a new class of carbon-based materials. The functionalization of edge positions in PAHs is important to enable the modulation of physical and chemical properties essential for various applications. However, straightforward methods that combine functional group tolerance and regioselectivity remain sought after.
View Article and Find Full Text PDFNear-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene (fDAE) derivative were investigated by time-resolved absorption and fluorescence spectroscopies. Prescreening with quantum chemical calculation predicted that a derivative with methylthienyl groups (mt-fDAE) in the closed-ring isomer has a two-photon absorption cross-section larger than 1000 GM, which was experimentally verified by Z-scan measurements and excitation power dependence in transient absorption. Comparison of transient absorption spectra under one-photon and simultaneous two-photon excitation conditions revealed that the closed-ring isomer of mt-fDAE populated into higher excited states deactivates following three pathways on a timescale of ca.
View Article and Find Full Text PDFHerein, we introduce a model of electronic spin isomers, the electronic counterpart of nuclear spin isomers, by using a stable organic diradical. The diradical, composed of two benzotriazinyl radicals connected by a rigid triptycene skeleton, exhibits a small singlet-triplet energy gap of -3.0 kJ/mol, indicating ca.
View Article and Find Full Text PDFWe herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation.
View Article and Find Full Text PDFThe self-assembled state of molecules plays a pivotal role in determining how inherent molecular properties transform and give rise to supramolecular functionalities and has long attracted attention. However, understanding the influence of morphologies spanning the nano- to mesoscopic scales of supramolecular assemblies derived from identical intermolecular interactions has been notoriously challenging due to dynamic structural change and monomer exchange of assemblies in solution. In this study, we demonstrate that curved one-dimensional molecular assemblies (supramolecular polymers) of lengths of around 70-200 nm, originating from the same luminescent molecule, exhibit distinct photoluminescent properties when they form closed circular structures (toroids) versus when they possess chain termini in solution (random coils).
View Article and Find Full Text PDFThe resonance between an electronic transition of a micro/nanoscale object and an incident photon flux can modify the radiation force exerted on that object, especially at an interface. It has been theoretically proposed that a non-linear stimulated emission process can also induce an optical force, however its direction will be opposite to conventional photon scattering/absorption processes. In this work, we experimentally and theoretically demonstrate that a stimulated emission process can induce a repulsive pulling optical force on a single trapped dye-doped particle.
View Article and Find Full Text PDFWe have demonstrated in the present report that dielectric microparticles exhibited orbital rotation in the light field of non-coaxially configured two counter-propagating laser beams both in numerical simulations and experiments. A series of computational simulations indicated that when irradiated with two non-coaxially counter-propagating parallel laser beams with the same intensity distributions in the absence of thermal (Brownian) motion, a microparticle did not exhibit orbital rotation due to the symmetry of the optical field. However, the computations predicted that a microparticle exhibited one directional orbital rotation in the presence of thermal motion because of the symmetry breaking of the optical force acting on the particle.
View Article and Find Full Text PDFThe phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation.
View Article and Find Full Text PDFA kinetically-stabilized nitrogen-doped triangulene cation derivative has been synthesized and isolated as the stable diradical with a triplet ground state that exhibits near-infrared emission. As was the case for a triangulene derivative we previously synthesized, the triplet ground state with a large singlet-triplet energy gap was experimentally confirmed by magnetic measurements. In contrast to the triangulene derivative, the nitrogen-doped triangulene cation derivative is highly stable even in solution under air and exhibits near-infrared absorption and emission because the alternancy symmetry of triangulene is broken by the nitrogen cation.
View Article and Find Full Text PDFExpression of room-temperature phosphorescence (RTP) in organic materials requires complicated molecular design and specific intermolecular interactions, and therefore types of RTP materials are restricted. This work presents cage-like sodalite-type porous organic salts (s-POSs) as host materials for luminescent molecules to induce RTP, using tetrasulfonic acid with an adamantane core and triphenylmethylamines that are modified with substituents in the para-positions of benzene rings (TPMA-X). By adding a representative luminescent molecule (pyrene) to a reaction solution during construction of s-POSs, the molecule is incorporated in a facile manner.
View Article and Find Full Text PDFThough -indacene is an intriguing antiaromatic hydrocarbon of 12 π-electrons, it has been underrepresented due to the lack of efficient and versatile methods to prepare stable derivatives. Herein we report a concise and modular synthetic method for hexaaryl--indacene derivatives bearing electron-donating/-accepting groups at specific positions to furnish -, -, and -symmetric substitution patterns. We also report the effects of substituents on their molecular structures, frontier molecular orbital (MO) levels, and magnetically induced ring current tropicities.
View Article and Find Full Text PDFWe report the thermodynamic and kinetic aqueous self-assembly of a series of amide-functionalized dithienyldiketopyrrolopyrroles (TDPPs) that bear various hydrophilic oligoethylene glycol (OEG) and hydrophobic alkyl chains. Spectroscopic and microscopic studies showed that the TDPP-based amphiphiles with an octyl group form sheet-like aggregates with J-type exciton coupling. The effect of the alkyl chains on the aggregated structure and the internal molecular orientation was examined via computational studies combining MD simulations and TD-DFT calculations.
View Article and Find Full Text PDFPhotomechanical molecular crystals are promising materials for photon-powered artificial actuators. To interpret the photomechanical responses, the spatiotemporal distribution of photoproducts in crystals could be an important role in addition to molecular structures, molecular packings, illumination conditions, crystal morphology, crystal size, and so on. In this study, we have found that single crystals of 2,5-distyrylpyrazine show a smooth single-crystal-to-single-crystal photomechanical expansion, and the photochemical reaction propagates from the edge to the center of the single crystal.
View Article and Find Full Text PDFA light-harvesting strategy is crucial for the utilisation of solar energy. In this study, we addressed the expanding light-harvesting (LH) wavelength of photosynthetic LH complex 2 (LH2, from strain 10050) through covalent conjugation with extrinsic chromophores. To further understand the conjugation architecture and mechanism of excitation energy transfer (EET), we examined the effects of the linker length and spectral overlap integral between the emission and absorption spectra of the energy donor and acceptor pigments.
View Article and Find Full Text PDFPhotoswitching molecules that reversibly switch upon visible-light irradiation are some of the most attractive targets for biological and imaging applications. In this study, we found a diarylethene (DAE) derivative having a covalently attached perylenebisimide (PBI) unit (DAE-PBI dyad) underwent an unexpected cyclization reaction upon irradiation with green (500-550 nm) light, where the DAE unit has no absorbance. The photoreactivity was enhanced in solvents containing heavy atoms and in the presence of oxygen.
View Article and Find Full Text PDFMulticarrier dynamics in heterostructured ZnS-AgInS (ZAIS) dumbbell-like nanoparticle (nanodumbell), which consists of two visible-light absorptive domains (ellipsoidal tip domains) directly linked to each end of a 22 nm length rod domain of the ZAIS nanodumbell with a quasi-type-II heterostructure, was investigated by femtosecond transient absorption spectroscopy under variable excitation intensities. Quantitative analysis together with the numerical simulations for the excitation intensity dependence of the dynamics revealed that only one electron-hole pair survived in the overall dumbbell as a consequence of Auger recombination, even though multiple carriers were formed on both terminal tip domains. This result strongly suggested carrier-carrier interaction between the tip domains, leading to the long-range Auger recombination via tunneling across a rod potential barrier.
View Article and Find Full Text PDFPump-repump-probe spectroscopy with a burst mode of photoexcitation was applied to the direct observation of the photoionization dynamics of perylene in the solution phase. Irradiation of a pump pulse train generated with birefringent crystals effectively accumulated an intermediate S state and a repump pulse triggered photoionization in the higher excited state, ensuring sufficiently large signal intensity to probe. Two-photon excitation to the energy level, which is 0.
View Article and Find Full Text PDFHelically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices working on the nanometer scale. Herein, we report the synthesis of per-peri-perbenzo[5]- and [9]helicenes in addition to previously reported π-extended [7]helicene. The homogeneously π-extended helicenes can be regarded as helically fused oligo-phenanthrenes.
View Article and Find Full Text PDFPhotosynthetic light-harvesting (LH) systems consist of photosynthetic pigments, which are non-covalently self-assembled with protein scaffolds in many phototrophs and attain highly efficient excitation energy transfer via ultrafast dynamics. In this study, we constructed a biohybrid LH system composed of an LH complex (LH2) from Rhodoblastus acidophilus strain 10050 and a hydrophobic fluorophore ATTO647N (ATTO) as an extrinsic antenna in the lipid bilayer. Through the addition of ATTOs into a solution of LH2-reconstituted lipid vesicles, ATTOs were incorporated into the hydrophobic interior of the lipid bilayer to configure the non-covalently self-assembled biohybrid LH.
View Article and Find Full Text PDFBecause supramolecular polymerization of emissive π-conjugated molecules depends strongly on π-π stacking interaction, the formation of well-defined one-dimensional nanostructures often results in a decrease or only a small increase of emission efficiency. This is also true for our barbiturate-based supramolecular polymers wherein hydrogen-bonded rosettes of barbiturates stack quasi-one-dimensionally through π-π stacking interaction. Herein we report supramolecular polymerization-induced emission of two regioisomeric 2,3-diphenylthiophene derivatives functionalized with barbituric acid and tri(dodecyloxy)benzyl wedge units.
View Article and Find Full Text PDFWe have investigated three-dimensional distribution and diffusion behaviors of single guest dyes in 1-µm thick films of poly(2-hydroxyethyl acrylate) (PHEA) by using astigmatism imaging method. Perylene diimide derivative (BP-PDI) in the PHEA films localized along the Z-axis at ca. Z = 600-700 nm distant from the interface (Z = 0) between PHEA and glass substrate.
View Article and Find Full Text PDF