Due to their high catalytic activity, stability, and economic benefits, Pt-based multi-element alloyed nanoparticles (NPs) are considered promising electrodes for oxygen reduction reactions. However, a synthesis method capable of controlling the reduction reaction of elements with different redox potentials to synthesize multimetallic alloy NPs is yet to be developed. In this study, monodisperse NiPtPd alloy NPs with varying compositions were synthesized using 1-heptanol as a reducing solvent.
View Article and Find Full Text PDFPhosphate recovery from wastewater using readily available biowaste-based adsorbents is beneficial for both eutrophication control and waste management. Bamboo char has a high-density porous structure and eggshell contains CaCO with high affinity for phosphate. The combination of calcined bamboo and eggshell is a potential adsorbent for P recovery that has not been tested previously.
View Article and Find Full Text PDFCo-Ni alloy nanoparticles, a potential candidate for microwave absorption material, were successfully synthesized by tuning the reduction timing of Co and Ni ions by introducing oleylamine as a complexing agent and 1-heptanol as a reducing solvent. The formation mechanism elucidated using time-resolved sampling and in situ X-ray absorption spectroscopy (XAS) and ultraviolet-visible (UV-vis) spectrophotometry measurements suggested that the delay in the reduction of Co ions via complexation with oleylamine facilitated the co-reduction of Co with Ni ions and led to the formation of Co-Ni alloys. The successful synthesis of Co-Ni alloys experimentally confirmed the differences in magnetic properties between alloy and core-shell structured CoNi particles.
View Article and Find Full Text PDFBimetallic nanomaterials have attracted much attention from various fields such as catalysis, optics, magnetism, and so forth. The functionality of such particles is influenced very much by the intermetallic interactions than their individual contribution. However, compared with the synthesis of monometallic nanoparticles, the reaction parameters that need to be controlled for tuning the size, shape, composition, and crystal structure of bimetallic nanoparticles becomes challenging.
View Article and Find Full Text PDFRecently, the development of bimetallic nanoparticles with functional properties has been attempted extensively but with limited control over their morphological and structural properties. The reason was the inability to control the kinetics of the reduction reaction in most liquid-phase syntheses. However, the alcohol reduction technique has demonstrated the possibility of controlling the reduction reaction and facilitating the incorporation of other phenomena such as diffusion, etching, and galvanic replacement during nanostructure synthesis.
View Article and Find Full Text PDFDevelopment of a technology for the synthesis of monometallic or multimetallic nanoparticles is exceptionally vital for the preparation of novel magnetic, optical. and catalytic functional materials. In this context, the polyol process is a safe and scalable method for preparation of metal nanoparticles with controlled sizes and shapes in large scales.
View Article and Find Full Text PDFIdeal interaction-free magnetite nanoparticles were prepared, and their magnetic properties were measured to clarify the true nature of magnetic anisotropy of individual magnetite nanoparticles at the nanoscale and to analyze the shape, surface, and crystalline anisotropy contributions. Spherical (17.7 nm), cubic (10.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Research to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system.
View Article and Find Full Text PDF