Publications by authors named "Hiroshi Kamitakahara"

This work describes a model study for synthesis of cellulose-based block copolymers, investigating selective coupling of peracetyl β-d-cellobiose and perethyl β-d-cellobiose at their reducing-ends by olefin cross-metathesis (CM). Herein we explore suitable pairs of ω-alkenamides that permit selective, quantitative coupling by CM. Condensation reactions of hepta-O-acetyl-β-d-cellobiosylamine or hepta-O-ethyl-β-d-cellobiosylamine with acyl chlorides afforded the corresponding N-(β-d-cellobiosyl)-ω-alkenamide derivatives with an aromatic olefin or linear olefinic structures.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated stone cells in the pedicels (stems) of pears and apples, revealing differences in lignification and secondary cell wall formation which are important for support and transport.
  • Pears showed a higher density and continued formation of stone cells compared to apples, leading to distinct differences in flesh texture.
  • Key genes related to stone cell formation were identified, with higher expression in pears than in apples, suggesting a genetic basis for the observed differences in pedicel structure and function.
View Article and Find Full Text PDF

This work demonstrates a unique approach of utilizing alkali lignin (AL), as smart additive to in situ BC fermentation in which it concurrently acts as promoter to microbial growth as well as reinforcing filler for fabrication of multifunctional composites. Traditionally, BC fermentation is accompanied by inhibitor formation with sudden drop in pH leading to low yield and biomass growth. AL due to its antioxidant nature prevents formation of gluconic acid as byproduct, at ∼0.

View Article and Find Full Text PDF

The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification.

View Article and Find Full Text PDF

Lignin content, composition, and linkage types were investigated in pear fruit cultivars and related species. Lignin content increased during early stages and then decreased toward ripening in the core and flesh of "Gold Nijisseiki" and "Alexandrine Douillard". The lignin content was highest at harvest in Chinese quince.

View Article and Find Full Text PDF

Polysaccharide-based copolymers with brush-like, graft architectures have been prepared by many investigators. In contrast, it is challenging to prepare linear polysaccharide-based block copolymers. Only a few approaches have been reported for preparation of such architectures, despite the clear application potential of renewable-based, linear block copolymers.

View Article and Find Full Text PDF

Affecting factors to the acyl chitosan isothiocyanate synthesis by N-phenylthiocarbamoylation and the following acylation was investigated using octyl 2-amino-2-deoxy-β-D-glucopyranoside as a model compound. It was found from the acetylation of N-phenylthiocarbamoyl glucosamine derivative with acetic anhydride/pyridine that the glucosamine isothiocyanate was formed via N,N-(acetyl)phenylthiocarbamoyl glucosamine derivative and the conversion of N,N-(acetyl)phenylthiocarbamoyl glucosamine derivative to the glucosamine isothiocyanate proceeded mainly by thermal degradation of N,N-(acetyl)phenylthiocarbamoyl groups. The reaction temperature was an important factor to the isothiocyanate synthesis.

View Article and Find Full Text PDF

3,6-Di-O-hexanoyl-N-[4-(N,N-diphenylamino)-1-phenyl] thiocarbamoyl chitosan was prepared from 3,6-di-O-hexanoyl chitosan isothiocyanate in a 78% yield, and spin-coated films of the chitosan derivative and tris(2-phenylpyridine)iridium (Ir(ppy)) were fabricated. Ultraviolet-visible absorption spectra and photoluminescence spectra of the films indicated efficient Förster energy transfer from the chitosan derivative to the Ir(ppy). An electroluminescent device using both compounds emitted green luminescence when voltage was applied.

View Article and Find Full Text PDF

Introduction: The rhizome of Angiopteris evecta is of academic interest in Kalimantan, Indonesia, from an ethnobotanical perspective. Angiopteroside is a substance of pharmaceutical importance that is found in the rhizome of A. evecta.

View Article and Find Full Text PDF

This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunotherapy utilizing Vγ2Vδ2 T cells shows promise for targeting tumors without needing to match MHC, making it effective across various cancer types.
  • A novel method using a bisphosphonate prodrug called PTA has been developed to significantly increase the purity and quantity of these T cells, achieving up to 99% purity versus lower rates with the standard agent, zoledronic acid.
  • This enhanced purity improves success rates for engrafting these T cells into immunocompromised mice and could expedite the creation of therapies using T cells from HLA-matched donors for patients who do not respond well to their own immune cell treatments.
View Article and Find Full Text PDF

Our previous study on prion-infected rodents revealed that hydroxypropyl methylcellulose compounds (HPMCs) with different molecular weights but similar composition and degree of substitution have different levels of long-lasting anti-prion activity. In this study, we searched these HPMCs for a parameter specifically associated with in vivo anti-prion activity by analyzing in vitro chemical properties and in vivo tissue distributions. Infrared spectroscopic and thermal analyses revealed no differences among HPMCs, whereas pyrene conjugation and spectroscopic analysis revealed that the fluorescence intensity ratio of peak III/peak I correlated with anti-prion activity.

View Article and Find Full Text PDF

Prion diseases are fatal, progressive, neurodegenerative diseases caused by prion accumulation in the brain and lymphoreticular system. Here we report that a single subcutaneous injection of cellulose ethers (CEs), which are commonly used as inactive ingredients in foods and pharmaceuticals, markedly prolonged the lives of mice and hamsters intracerebrally or intraperitoneally infected with the 263K hamster prion. CEs provided sustained protection even when a single injection was given as long as one year before infection.

View Article and Find Full Text PDF

This paper describes a versatile pathway to heterobifunctional/telechelic cellulose ethers, such as tri-O-methyl cellulosyl azide and propargyl tri-O-methyl celluloside, having one free C-4 hydroxyl group attached to the glucosyl residue at the non-reducing end for the use in Huisgen 1,3-dipolar cycloaddition and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The one-step end-functionalization of cellulose ethers for molecular rod synthesis involves the introduction of two reactive groups at both ends of the cellulose molecule, and can afford linear triblock copolymers via CuAAC and further reactions. We were able to tailor the degree of polymerization of end-functionalized cellulose ethers with controlled amounts of a Lewis acid, namely SnCl4.

View Article and Find Full Text PDF

A regio-selectively squaraine (SQ)-bounded cellulose derivative (4) with a degree of substitution of SQ (DSSQ) of 0.55 was prepared from 6-O-(4-methoxytrityl) cellulose (1) by three reaction steps in 77% total yield. Lauryl SQ carboxylate (8) was also prepared as a reference sample.

View Article and Find Full Text PDF

We recently observed that the decanoylation of N-phenylthiocarbamoyl chitosan (2) with a mixture of decanoic anhydride and pyridine at 60 °C for 24 h afforded N,N-(decanoyl)phenythiocarbamoyl-/2-isothiocynato chitosan decanoate (3b) rather than the expected product N,N-(decanoyl)phenylthiocarbamoyl chitosan decanoate (3a). This result suggested that some of the N,N-(decanoyl)phenylthiocarmbamoyl groups had been converted to isothiocyanate groups during the decanoylation process. The subsequent reaction of compound 3b with aniline gave N,N-(decanoyl)phenylthiocarbamoyl/N-phenylthiocarbamoyl chitosan decanoate (4) in high yield.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem.

View Article and Find Full Text PDF

Chitosan (1) was reacted with phenylisothiocyanate in 5% AcOH/H2O to give N-phenylthiocarbamoyl chitosan (2) with a degree of substitution (DS) of N-phenylthiocarbamoyl groups of 0.86 in 87.1% yield.

View Article and Find Full Text PDF

The tandem Staudinger/aza-Wittig reaction of the 6-azido-6-deoxycellulose derivative (2) with triphenylphosphine and carbon disulfide afforded the corresponding 6-isothiocyanato-6-deoxycellulose derivative (3) in 47.3% yield. Compound 3 was further reacted with 4'-aminobenzo-15-crown ether to afford the crown ether-containing 6-N-thioureido-6-deoxycellulose derivative (4) in 70.

View Article and Find Full Text PDF

Mouse monoclonal antibodies were generated against dehydrodiconiferyl alcohol- or pinoresinol-p-aminohippuric acid (pAHA)-bovine serum albumin (BSA) conjugate as probes that specifically react with 8-5' or 8-8' linked structure of lignin in plant cell walls. Hybridoma clones were selected that produced antibodies that positively reacted with dehydrodiconiferyl alcohol- or pinoresinol-pAHA-BSA and negatively reacted with pAHA-BSA and guaiacylglycerol-beta-guaiacyl ether-pAHA-BSA conjugates containing 8-O-4' linkage. Eight clones were established for each antigen and one of each clone that positively reacted with wood sections was selected.

View Article and Find Full Text PDF

This article provides detailed insight into the thermoresponsive gelation mechanism of industrially produced methylcellulose (MC), highlighting the importance of diblock structure with a hydrophobic sequence of 2,3,6-tri-O-methyl-glucopyranosyl units for this physicochemical property. We show herein, for the first time, that well-defined diblock MC self-assembles thermoresponsively into ribbonlike nanostructures in water. A cryogenic transmission electron microscopy (cryo-TEM) technique was used to detect the ribbonlike nanostructures formed by the diblock copolymers consisting of hydrophilic glucosyl or cellobiosyl and hydrophobic 2,3,6-tri-O-methyl-cellulosyl blocks, methyl β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 1 (G-236MC, DP(n) = 10.

View Article and Find Full Text PDF

For the first time, 2-O-methyl- (2MC) and 3,6-di-O-methyl-cellulose (36MC) were synthesized via 3-O-allyl- and 3-O-methyl-cellulose, respectively. Position 6 of 3-O-allyl- and 3-O-methyl-cellulose was protected with the 4-methoxytrityl groups. The reaction time and temperature were optimized to achieve a high regioselectivity at C-6 and to prevent the introduction of the 4-methoxytrityl group at C-2 of the polymer.

View Article and Find Full Text PDF

6-Azafulleroid-6-deoxy-2,3-di-O-myristoylcellulose (3) was synthesized from 6-azido-6-deoxycellulose (1) by two reaction steps. The myristoylation of compound 1 with myristoyl chloride/pyridine proceeded smoothly to give 6-azido-6-deoxy-2,3-di-O-myristoylcellulose (2) in 97.0% yield.

View Article and Find Full Text PDF

New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (G(β)G(β)M(α)), 3 (G(β)G(α)M(β)), 4 (G(β)G(β)M(β)), 5 (G(β)G(α)E(α), E: ethyl group), 6 (G(β)G(β)E(α)), 7 (G(β)G(α)E(β)), 8 (G(β)G(β)E(β)) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2=62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4=69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6=62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8=59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated.

View Article and Find Full Text PDF

Regioselectively ethylated celluloses, 2-O- (1), 3-O- (2), and 6-O-ethyl- (3) celluloses were synthesized via ring-opening polymerization of glucopyranose orthopivalate derivatives. The number-average degrees of polymerization (DP(n)s) of compounds 1 and 2 were calculated to be 10.6 and 49.

View Article and Find Full Text PDF