Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments.
View Article and Find Full Text PDFIn flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence.
View Article and Find Full Text PDFRoot elongation induced by phosphorus deficiency has been reported as one of the adaptive mechanisms in plants. Genetic differences were found in rice for the root elongation under phosphorus deficiency (REP), for which a distinct quantitative trait locus (QTL) was detected on the long arm of chromosome 6. Subsequently, the effect and position of the QTL, designated as qREP-6, were confirmed using chromosome segment substitution lines (CSSLs), in which the background of a japonica cultivar, 'Nipponbare' with non-REP, was partially substituted by chromosomal segments from an indica cultivar, 'Kasalath' with remarkable REP.
View Article and Find Full Text PDFDuring routine seed increase procedures in rice, semi-sterile plants are common; however, such semi-sterility mutants in rice varieties have been only rarely analyzed genetically. W207-2 is a semi-sterile selection from the japonica rice variety Nipponbare. In this report, we found the female gamete of W207-2 was normal, and its semi-sterility was unaffected by growth duration but was conditioned by a recessive nuclear gene whose action leads to pollen semi-sterility and anther indehiscence, and the gene was named as pss1 (pollen semi-sterile).
View Article and Find Full Text PDFKetan Nangka, the donor of wide compatibility genes, showed sterility when crossed to Tuanguzao, a landrace rice from Yunnan province, China. Genetic and cytological analyses revealed that the semi-sterility was primarily caused by partial abortion of the embryo sac. Genome-wide analysis of the linkage map constructed from the backcross population of Tuanguzao/Ketan Nangka//Ketan Nangka identified two independent loci responsible for the hybrid sterility located on chromosomes 2 and 5, which explained 18.
View Article and Find Full Text PDFIn order to identify quantitative trait loci (QTLs) for leaf senescence and related traits in rice (Oryza sativa L.), we developed two backcross populations, indica/japonica// japonica and indica/japonica//indica, using IR36 as the indica parent and Nekken-2 as the japonica parent. The QTLs were mapped using a set of simple sequence-repeat markers (SSRs) in the BC(1)F(1) population.
View Article and Find Full Text PDFDistorted segregation of the brittle culm-1 gene (bc1) on rice chromosome 3 was found with greatly increased or decreased frequency of bc1 bc1 genotype in inter-subspecific hybrids, although the gene normally transmitted to its offspring following the Mendelian Law in intra-subspecific hybrids. In a combination of Kamairazu//Ketan Nangka/Kamairazu,an increased frequency of bc1 bc1 in F1, normal segregation in F2, and increased and decreased frequency in a few F3 and F4 lines were observed. In a cross of IR36/Kamairazu, decreased frequency in F2, both normal and decreased segregations in F3 and F4, and a few lines of increased ratio in F4 were found.
View Article and Find Full Text PDFA significant level of root elongation was induced in rice (Oryza sativa) grown under phosphorus-deficient conditions. The root elongation clearly varied among a total of 62 varieties screened under two different phosphorus levels. Two contrasting varieties, 'Gimbozu', with a low elongating response and 'Kasalath', with a high elongating response, were chosen and crossed to produce a hybrid population for QTL analyses.
View Article and Find Full Text PDF