Publications by authors named "Hiroo Hoshina"

Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders that impair degradation of glycosaminoglycans (GAG). The specific GAGs that accumulate depend on the type of MPS, leading to unique characteristic clinical features. Development of guidelines for treatment of MPS has traditionally been multifaceted and largely based on palliative care.

View Article and Find Full Text PDF

Small molecules called pharmacological chaperones have been shown to improve the stability, intracellular localization, and function of mutated enzymes in several lysosomal storage diseases, and proposed as promising therapeutic agents for them. However, a chaperone compound for mucopolysaccharidosis type II (MPS II), which is an X-linked lysosomal storage disorder characterized by a deficiency of iduronate-2-sulfatase (IDS) and the accumulation of glycosaminoglycans (GAGs), has still not been developed. Here we focused on the Δ-unsaturated 2-sulfouronic acid-N-sulfoglucosamine (D2S0), which is a sulfated disaccharide derived from heparin, as a candidate compound for a pharmacological chaperone for MPS II, and analyzed the chaperone effect of the saccharide on IDS by using recombinant protein and cells expressing mutated enzyme.

View Article and Find Full Text PDF

Mucopolysaccharidosis type II (MPS II) is an X-linked lysosomal storage disorder arising from deficiency of iduronate-2-sulfatase (IDS), which results in progressive accumulation of glycosaminoglycans (GAGs) in multiple tissues. Accumulated GAGs are generally measured as the amount of total GAGs. However, we recently demonstrated that GAG accumulation in the brain of MPS II model mice cannot be reliably detected by conventional dye-binding assay measuring total GAGs.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive myopathic disorder caused by the deficiency of lysosomal acid α-glucosidase (GAA). Recently, we showed that function of mutant GAA in fibroblasts derived from Pompe disease patient carrying c.546G>T mutation is improved by treatment with proteasome inhibitor bortezomib as well as pharmacological chaperone (PC).

View Article and Find Full Text PDF