Publications by authors named "Hironori Matsunaga"

Background: Tumors can evolve and adapt to therapeutic pressure by acquiring genetic and epigenetic alterations that may be transient or stable. A precise understanding of how such events contribute to intratumoral heterogeneity, dynamic subpopulations, and overall tumor fitness will require experimental approaches to prospectively label, track, and characterize resistant or otherwise adaptive populations at the single-cell level. In glioblastoma, poor efficacy of receptor tyrosine kinase (RTK) therapies has been alternatively ascribed to genetic heterogeneity or to epigenetic transitions that circumvent signaling blockade.

View Article and Find Full Text PDF

Gliomas are the second most common primary brain tumors in adults. They are treated with combination therapies, including surgery, radiotherapy, and chemotherapy. There are currently limited treatment options for recurrent gliomas, and new targeted therapies need to be identified, especially in glioblastomas, which have poor prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • Chondrosarcoma is a serious type of bone cancer that doesn't respond well to regular treatments like chemotherapy or radiation.
  • About half of the people with this cancer have a change in a gene called IDH, which makes the cancer worse by producing a harmful substance.
  • A new drug called DS-1001b shows promise by stopping the bad effects of the IDH change, helping to slow down cancer growth and possibly improve treatment options for patients.
View Article and Find Full Text PDF

The original version of this Article omitted the fourth author Taizo Yoshinaga, who is from the 'Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan'. Consequently, the third sentence of the Author Contributions, 'M.S.

View Article and Find Full Text PDF

Infrared-light-induced carrier transfer is a key technology for 'invisible' optical devices for information communication systems and energy devices. However, clear and colourless photo-induced carrier transfer has not yet been demonstrated in the field of photochemistry, to the best of our knowledge. Here, we resolve this problem by employing short-wavelength-infrared (1400-4000 nm) localized surface plasmon resonance-induced electron injection from indium tin oxide nanocrystals to transparent metal oxides.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy.

View Article and Find Full Text PDF

A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date.

View Article and Find Full Text PDF

IDH1 and IDH2 mutations occur frequently in acute myeloid leukemia (AML) and other cancers. The mutant isocitrate dehydrogenase (IDH) enzymes convert α-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), which dysregulates a set of α-KG-dependent dioxygenases. To determine whether mutant IDH enzymes are valid targets for cancer therapy, we created a mouse model of AML in which mice were transplanted with nucleophosmin1 (NPM)(+/-) hematopoietic stem/progenitor cells cotransduced with four mutant genes (NPMc, IDH2/R140Q, DNMT3A/R882H, and FLT3/ITD), which often occur simultaneously in human AML patients.

View Article and Find Full Text PDF

5-Hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) represent important epigenetic modifications to DNA, and a sensitive analytical method is required to determine the levels of 5hmC in the genomic DNA of tumor cells or cultured cell lines because 5hmC is present at particular low levels in these cells. We have developed a sensitive liquid chromatography-tandem quadrupole mass spectrometric method for quantifying 5-hydroxymethyldeoxycytidine (5hmdC), 5-methyldeoxycytidine (5mdC), and deoxyguanosine (dG) levels using stable isotope labeled internal standards, and used this method to estimate the global level of 2 modified cytosines in genomic DNA prepared from small number of cells. The quantification limits for 5hmdC, 5mdC and dG were 20pM, 2nM and 10nM, respectively.

View Article and Find Full Text PDF

K-Ras is frequently mutated and activated especially in pancreatic cancers. To analyze K-Ras function, we have searched for K-Ras interacting proteins and found IQ motif containing GTPase activating protein 1 (IQGAP1) as a novel K-Ras binding protein. IQGAP1 has been known as a scaffold protein for B-Raf, MEK1/2 and ERK1/2.

View Article and Find Full Text PDF

D-2-hydroxyglutaric aciduria (D-2HGA) is a hereditary metabolic disorder characterized by the elevated levels of D-2-hydroxyglutaric acid (D-2HG) in urine, plasma and cerebrospinal fluid. About half of the patients have autosomal recessive mutations in D-2-hydroxyglutarate dehydrogenase (D2HGDH) gene. To analyze the origin of D-2HG in D2HGDH-depleted cells, we used small interfering RNA (siRNA) techniques.

View Article and Find Full Text PDF