Publications by authors named "Hironori Kasahara"

It is generally accepted that the direct connection from the motor cortex to spinal motor neurons is responsible for dexterous hand movements in primates. However, the role of the 'phylogenetically older' indirect pathways from the motor cortex to motor neurons, mediated by spinal interneurons, remains elusive. Here we used a novel double-infection technique to interrupt the transmission through the propriospinal neurons (PNs), which act as a relay of the indirect pathway in macaque monkeys (Macaca fuscata and Macaca mulatta).

View Article and Find Full Text PDF

The inferior temporal (IT) cortex has been shown to serve as a storehouse of visual long-term memory for object shapes. However, it is currently unclear how information regarding multiple visual attributes of objects, including shape and color, is stored and retrieved in an organized way. Specifically, the question of whether information regarding different visual attributes is encoded by different neurons, and the spatial organization of neurons that encode visual attribute-dependent object information remain to be elucidated.

View Article and Find Full Text PDF

The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway.

View Article and Find Full Text PDF

Recent evidence suggests that adult neural stem/progenitor cells (ANSCs) secrete autocrine/paracrine factors and that these intrinsic factors are involved in the maintenance of adult neurogenesis. We identified a novel secretory molecule, stem cell-derived neural stem/progenitor cell supporting factor (SDNSF), from adult hippocampal neural stem/progenitor cells by using the signal sequence trap method. The expression of SDNSF in adult central nervous system was localized to hippocampus including dentate gyrus, where the neurogenesis persists throughout life.

View Article and Find Full Text PDF