Publications by authors named "Hironori Gamo"

Crystal phase transitions can form a new type of heterojunction with different atomic arrangements in the same material: crystal phase heterojunction (CPHJ). The CPHJ has an inherently strong impact on band engineering without concerns over critical thicknesses with misfit dislocations and a semiconductor-metal transition. In-plane CPHJ was recently demonstrated in two-dimensional (2D) transition-metal dichalcogenide (TMD) materials and utilized for conventional planar field-effect transistor applications.

View Article and Find Full Text PDF

The epitaxy of the Sb-related quantum well structure has been extensively investigated. However, the GaSb facet growth in selective-area growth (SAG) and GaSb nanostructures has not been investigated because of the surface diffusion complexity and surfactant effect of Sb adatoms. Here, the growth morphology of GaSb structures in SAG was characterized via InGaAs nanowires (NWs) monolithically grown on a Si template.

View Article and Find Full Text PDF

Heteroepitaxy has inherent concerns regarding crystal defects originated from differences in lattice constant, thermal expansion coefficient, and crystal structure. The selection of III-V materials on group IV materials that can avoid these issues has however been limited for applications such as photonics, electronics, and photovoltaics. Here, we studied nanometer-scale direct integration of InGaAs nanowires (NWs) on Ge in terms of heterogenous integration and creation of functional materials with an as yet unexplored heterostructure.

View Article and Find Full Text PDF