Publications by authors named "Hironobu Ozawa"

The onset potential for H production from neutral water (pH 7) catalyzed by a platinum(ii) porphyrin (PtP-py) modified TiO electrode positions very close to the standard water reduction potential (less than 50 mV). H production is driven by the conduction band edge potential of TiO at the PtP-py-modified TiO cathode.

View Article and Find Full Text PDF

A polypyridyl ruthenium sensitizer possessing pyridyl anchors (Ru-py) forms much stronger chemical linkages to TiO surfaces compared to the conventional carboxylate and phosphonate ones. A highly stable dye-sensitized photoelectrochemical cell for water reduction is successfully demonstrated using this technique.

View Article and Find Full Text PDF

Three chloro(4'-(N-methylpyridinium)-2,2':6',2''-terpyridine)platinum(ii) (abbreviated as ) derivatives tethered to a single alkyl viologen unit (-(CH2)n-CH2-N(+)C5H4-C5H4N(+)-CH3; abbreviated as -, where n = 1, 3, and 4), i.e., , have been synthesized and investigated in detail.

View Article and Find Full Text PDF

A ruthenium sensitizer with an extended π-conjugated terpyridine (TUS-42) has been synthesized for dye-sensitized solar cells (DSCs). Upon extension of the π-conjugated system of the terpyridine ligand, the conversion efficiency of the DSC with TUS-42 improved successfully to 10.7%, which is almost comparable to that of one of the most efficient ruthenium sensitizers (Black dye).

View Article and Find Full Text PDF

Three novel metal-free organic dyes (DN458, DN475 and DN484) were designed for use in plastic-substrate dye-sensitized solar cells (PDSCs). The photoelectric conversion region of DN475 was successfully expanded into the near-infrared region. As a result, an energy conversion efficiency of 5.

View Article and Find Full Text PDF

Two novel ruthenium sensitizers with a hexylthiophene-modified terpyridine ligand (TUS-35 and TUS-36) were synthesized to improve the molar absorptivity of the previously reported ruthenium sensitizer (TBA)[Ru{4'-(3,4-dicarboxyphenyl)-4,4″-dicarboxyterpyridine}(NCS)3], TBA = tetrabutylammonium (TUS-21). A relatively strong absorption appeared at ∼380 nm, and the molar absorption coefficient at the metal-to-ligand charge transfer (MLCT) band decreased in TUS-35 by introducing a 2-hexylthiophene unit to the 5-position of the terpyridine-derived ligand. For comparison, a relatively strong absorption was observed at ∼350 nm without decreasing the molar absorption coefficient at the MLCT band in TUS-36 by introducing a 2-hexylthiophene unit to the 4-position of the terpyridine-derived ligand.

View Article and Find Full Text PDF

Two novel ruthenium sensitizers having multiple carboxyl groups ((TBA)[Ru{4'-(3,4-dicarboxyphenyl)-4,4″-dicarboxyterpyridine}(NCS)3] (TUS-21) and (TBA)[Ru{4'-(3-carboxyphenyl)-4,4″-dicarboxyterpyridine}(NCS)3] (TUS-37); TBA = tetrabutylammonium) have been synthesized as improved model sensitizers for the previously reported ruthenium sensitizer TUS-20 ((TBA)[Ru{4'-(3,4-dicarboxyphenyl)terpyridine}(NCS)3]). The absorption maxima of two MLCT bands and the absorption onsets of TUS-21 and TUS-37 were shifted to longer wavelengths of about 30 nm in comparison to those of TUS-20 by introducing a carboxyl group to the each terminal pyridine ring of the terpyridine ligand. TUS-21 and TUS-37 showed quite similar adsorption behaviors to the TiO2 surface, and this adsorption behavior was found to be different from that of TUS-20.

View Article and Find Full Text PDF

A novel ruthenium sensitizer ((TBA)[Ru(3',4'-dicarboxyterpyridine)(NCS)3], TBA = tetrabutylammonium, TUS-28) has been synthesized as an improved model sensitizer for (TBA)[Ru(4'-(3,4-dicarboxyphenyl)terpyridine)(NCS)3] (TUS-20). The molar absorptivity of TUS-28 in the whole visible region was smaller than that of TUS-20 due to the absence of the phenyl ring at the terpyridine ligand. On the other hand, the energy levels of HOMO and LUMO of TUS-28 were still suitable for effective electron transfer reactions in dye-sensitized solar cells (DSCs).

View Article and Find Full Text PDF

Co-sensitized dye-sensitized solar cells using black dye and a pyridine-anchor dye (NI5 or YNI-2) showing site-selective adsorption behaviour at the TiO2 surface have been prepared for the first time to reduce the competitive adsorption between the two dyes.

View Article and Find Full Text PDF

Five novel ruthenium sensitizers (TUS sensitizers) with a dianionic tridentate ligand (pyridine-2,6-dicarboxyamidato and its derivatives) have been synthesized for application to dye-sensitized solar cells (DSCs). These TUS sensitizers have much larger molar absorption coefficients in the wavelength range below 600 nm compared with those of Black dye which is a structural analog and a highly efficient ruthenium sensitizer. The energy levels of HOMOs and LUMOs of TUS sensitizers shifted to the positive direction with increasing the electron-withdrawing ability of the substituents on the dianionic tridentate ligand.

View Article and Find Full Text PDF

Dependence of the suppression of the backward electron transfer reaction from the TiO2 photoelectrode to I3(-) in the electrolyte on the alkyl chain length of the quaternary ammonium cation has been investigated for further efficiency improvement of high-performance cosensitized dye-sensitized solar cells (DSCs). The tetraheptylammonium cation was found to be more effective than the tetraethylammonium and tetrabutylammonium cations for the suppression of the backward electron transfer reaction without changing the conduction band energy of TiO2. 12.

View Article and Find Full Text PDF

The photoinduced electron transfer properties of two photo-hydrogen-evolving molecular devices (PHEMDs) [(bpy)2Ru(II)(phen-NHCO-bpy-R)Pt(II)Cl2](2+) (i.e., condensation products of [Ru(bpy)2(5-amino-phen)](2+) and (4-carboxy-4′-R-bpy)PtCl2; bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline; RuPt-COOH for R = COOH and RuPt-CN for R = CN) were investigated.

View Article and Find Full Text PDF

The first example of a ruthenium sensitizer (TUS-22) having a natural dye, bisdemethoxycurcumin, as a ligand has been synthesized. The dye-sensitized solar cell based on this novel dye showed 5.8% conversion efficiency under AM 1.

View Article and Find Full Text PDF

Effective enhancement of the performance of black dye based dye-sensitized solar cells has been achieved by MgO or Al(2)O(3) surface modification of the TiO(2) photoelectrode. The conversion efficiency was improved from 10.4% to 10.

View Article and Find Full Text PDF

The effects of the dye-adsorption solvent on the performances of the dye-sensitized solar cells (DSSCs) based on black dye have been investigated. The highest conversion efficiency (10.6 %) was obtained in the cases for which 1-PrOH and the mixed solvent of EtOH and tBuOH (3:1 v/v) were employed as dye-adsorption solvents.

View Article and Find Full Text PDF

This article summarizes the ongoing studies on the photo-hydrogen-evolving molecular devices (PHEMDs) made up of polypyridyl Ru(II) photosensitizers and Pt(II)-based molecular catalysts, carried out in the authors' group in the last two decades. The H(2)-evolving activities of Pt(II)-based molecular catalysts demonstrated by various experimental evidences are first described. Then the structure-activity relationship, some important factors required for the higher catalytic activity, and several important insights into the mechanism of photochemical H(2) evolution catalyzed by the Ru(II)Pt(II)-based PHEMDs will be discussed in detail.

View Article and Find Full Text PDF

The mechanism of photoinduced hydrogen evolution from water driven by the first photo-hydrogen-evolving molecular catalyst (1), given by a coupling of [Ru(bpy)(2)(5-amino-phen)](2+) and [PtCl(2)(4,4'-dicarboxy-bpy)] (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), was investigated in detail. The H(2) evolution rate was found to obey Michaelis-Menten enzymatic kinetics with regard to the concentration of EDTA (ethylenediamine tetra-acetic acid disodium salt, sacrificial electron donor), which indicates that an ion-pair formation between the dicationic 1 and the dianionic form of EDTA (pH 5) is a key step leading to H(2) formation. A 2:1 coupling product of 1 and ethylenediamine (i.

View Article and Find Full Text PDF

The photo-hydrogen-evolving activity (activity to enhance the photochemical EDTA-reduction of water into molecular hydrogen) was evaluated for three different Ru(II)Pt(II) dimers with a general formula of [(bpy)2Ru(micro-bridge)PtCl2]2+(bpy = 2,2'-bipyridine; bridge = 4,4'-bis(N-(3-aminopropyl)carbamoyl)-2,2'-bipyridine (L1), 2,3-bis(2-pyridyl)pyrazine (L2), and 4,4'-bis(N-(4-pyridyl)methylcarbamoyl)-2,2'-bipyridine (L3); EDTA = ethylenediaminetetraacetic acid disodium salt). A new Ru(II)Pt(II) complex, [(bpy)2Ru(micro-L3)PtCl2]2+, was synthesized and characterized. It was confirmed that all three compounds are ineffective towards photochemical H2 production.

View Article and Find Full Text PDF

A tris(2,2'-bipyridine)ruthenium(II) derivative having two N-(3-ammoniopropyl)carbamoyl pendant units has been prepared and reacted with cis-PtCl2(DMSO)2 (DMSO = dimethyl sulfoxide) to give a heteronuclear Ru(II)Pt(II) dimer having a cis-Pt(II)Cl2(aliphatic amine)2 unit, [Ru(bpy)2(mu-bridge)PtCl2](PF6)2 (bpy = 2,2'-bipyridine, bridge = 4,4'-bis(N-(3-aminopropyl)carbamoyl)-2,2'-bipyridine). The ESI-TOF mass spectrum of the Ru(II)Pt(II) dimer shows a set of signals corresponding to {[Ru(bpy)2(mu-bridge)PtCl2](PF6)}(+) (m/z 1181.1).

View Article and Find Full Text PDF

A photo-hydrogen-evolving molecular device made up of a tris(2,2'-bipyridine)ruthenium(II) derivative and a dichloro(2,2'-bipyridine)platinum(II) derivative has been found to serve as the first effective model of a "molecular device" which evolves molecular hydrogen from water in the presence of a sacrificial electron donor (EDTA), under the visible-light illumination.

View Article and Find Full Text PDF