Recent advances in the research field of supramolecularly engineered dye aggregates have enabled the design of simple one-dimensional stacks such as fibers and of closed structures such as nanotoroids (nanorings). More complex and advanced supramolecular systems could potentially be designed using a molecule that is able to provide either of these distinct nanostructures under different conditions. In this study, we introduced bulky but strongly aggregating cholesterol units to a scissor-shaped azobenzene dyad framework, which affords either nanotoroids, nanotubes, or 1D fibers, depending on the substituents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2022
Hierarchical organization of self-assembled structures into superstructures is omnipresent in Nature but has been rarely achieved in synthetic molecular assembly due to the absence of clear structural rules. We herein report on the self-assembly of scissor-shaped azobenzene dyads which form discrete nanotoroids that further organize into 2D porous networks. The steric demand of the peripheral aliphatic units diminishes the trend of the azobenzene dyad to constitute stackable nanotoroids in solution, thus affording isolated (unstackable) nanotoroids upon cooling.
View Article and Find Full Text PDFUnique relationships between hierarchically organized biological nanostructures and functions have motivated chemists to construct sophisticated artificial nanostructured systems from small and simple synthetic molecules through self-assembly. As one of such sophisticated systems, we have investigated scissor-shaped photochromic dyads that can hierarchically self-assemble into discrete nanostructures showing photoresponsive properties. We synthesized various azobenzene dyads and found that these dyads adopt intramolecularly folded conformation like a closed scissor, and then self-assemble into toroidal nanostructures by generating curvature.
View Article and Find Full Text PDFScissor-shaped azobenzene dyads possessing alkyl side chains can hierarchically self-assemble through a folded conformation into toroidal and tubular nanostructures. We found that the introduction of perfluoroalkyl side chains transforms the assembly pathway into direct one-dimensional stacking of the folded conformer, resulting in the formation of gel-forming supramolecular fibers that can reversibly dissociate and reassemble on exposure to light.
View Article and Find Full Text PDF