Publications by authors named "Hironao Wakabayashi"

Translating ribosomes unwind mRNA secondary structures by three basepairs each elongation cycle. Despite the ribosome helicase, certain mRNA stem-loops stimulate programmed ribosomal frameshift by inhibiting translation elongation. Here, using mutagenesis, biochemical and single-molecule experiments, we examine whether high stability of three basepairs, which are unwound by the translating ribosome, is critical for inducing ribosome pauses.

View Article and Find Full Text PDF

By forming base-pairing interactions with the 3' end of 16S rRNA, mRNA Shine-Dalgarno (SD) sequences positioned upstream of open reading frames facilitate translation initiation. During the elongation phase of protein synthesis, intragenic SD-like sequences stimulate ribosome frameshifting and may also slow down ribosome movement along mRNA. Here, we show that the length of the spacer between the SD sequence and P-site codon strongly affects the rate of ribosome translocation.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Candida albicans is a diploid fungus and a predominant opportunistic human pathogen. Notably, C. albicans employs reversible chromosomal aneuploidies as a means of survival in adverse environments.

View Article and Find Full Text PDF

, a prevailing opportunistic fungal pathogen of humans, has a diploid genome containing three homologous genes that are evolutionarily conserved. One of these, the essential gene , encodes the catalytic subunit of glucan synthase, which is the target of echinocandin drugs and also serves as a site of drug resistance. The other two glucan synthase-encoding genes, and , are also expressed, but their roles in resistance are considered unimportant.

View Article and Find Full Text PDF

After the publication of this work [1], it was noticed that an initial was missing from the author name: Jeffrey Hayes. His name should be written as: Jeffrey J. Hayes.

View Article and Find Full Text PDF

Background: The major human fungal pathogen Candida albicans possesses a diploid genome, but responds to growth in challenging environments by employing chromosome aneuploidy as an adaptation mechanism. For example, we have shown that C. albicans adapts to growth on the toxic sugar L-sorbose by transitioning to a state in which one chromosome (chromosome 5, Ch5) becomes monosomic.

View Article and Find Full Text PDF

Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant species. Although it is uncommon, echinocandin resistance is well documented for , which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells to clinical breakthrough.

View Article and Find Full Text PDF

Candida albicans is an important fungal pathogen with a diploid genome that can adapt to caspofungin, a major drug from the echinocandin class, by a reversible loss of one copy of chromosome 5 (Ch5). Here, we explore a hypothesis that more than one gene for negative regulation of echinocandin tolerance is carried on Ch5. We constructed C.

View Article and Find Full Text PDF

Introduction: Candida albicans has been detected together with Streptococcus mutans in high numbers in plaque-biofilm from children with early childhood caries (ECC). The goal of this study was to examine the C. albicans carriage in children with severe early childhood caries (S-ECC) and the maternal relatedness.

View Article and Find Full Text PDF

An important negative regulator of factor VIIIa (FVIIIa) cofactor activity is A2 subunit dissociation. FVIII molecules with stabilized activity have been generated by elimination of charged residues at the A1-A2 and A2-A3 interfaces. These molecules exhibited reduced decay rates as part of the enzymatic factor Xa generation complex and retained their activities under thermal and chemical denaturing conditions.

View Article and Find Full Text PDF

Proteolytic cleavage of factor VIII (FVIII) to activated FVIIIa is required for participation in the coagulation cascade. The A2 domain is no longer covalently bound in the resulting activated heterotrimer and is highly unstable. Aspartic acid (D) 519 and glutamic acid (E) 665 at the A1-A2 and A2-A3 domain interfaces were identified as acidic residues in local hydrophobic pockets.

View Article and Find Full Text PDF

The factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His(281) (A1 domain) with Ser(524) (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His(281) and Ser(524) residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains.

View Article and Find Full Text PDF

Factor VIII (FVIII) consists of a heavy chain (A1(a1)A2(a2)B domains) and light chain ((a3)A3C1C2 domains). To gain insights into a role of the FVIII C domains, we eliminated the C1 domain by replacing it with the homologous C2 domain. FVIII stability of the mutant (FVIIIC2C2) as measured by thermal decay at 55 °C of FVIII activity was markedly reduced (~11-fold), whereas the decay rate of FVIIIa due to A2 subunit dissociation was similar to WT FVIIIa.

View Article and Find Full Text PDF

Factor (F)VIII consists of a heavy chain [A1(a1)A2(a2)B domains] and a light chain [(a3)A3C1C2 domains]. Several reports have shown significant changes in FVIII stability and/or activity following selected mutations at the A1-A2, A1-A3, A2-A3, and A1-C2 domain interfaces. In this study, the remaining inter-FVIII subunit interfaces (A3-C1 and C1-C2) were examined for their contributions to the stability and activity of FVIII and FVIIIa.

View Article and Find Full Text PDF

F (Factor) VIIIa binds to phospholipid membranes during formation of the FXase complex. Free thiols from cysteine residues of isolated FVIIIa A1 and A2 subunits and the A3 domain of the A3C1C2 subunit were labelled with PyMPO maleimide {1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)-oxazol-2-yl]pyridinium methanesulfonate} or fluorescein (fluorescence donors). Double mutations of the A3 domain (C2000S/T1872C and C2000S/D1828C) were also produced to utilize Cys(1828) and Cys(1872) residues for labelling.

View Article and Find Full Text PDF

The clinical severity in some patients with haemophilia A appears to be unrelated to the levels of factor (F)VIII activity (FVIII:C), but mechanisms are poorly understood. We have investigated a patient with a FVIII gene mutation at Arg1781 to His (R1781H) presenting with a mild phenotype despite FVIII:C of 0.9 IU/dl.

View Article and Find Full Text PDF

Although factor (F) VIIIa is inactivated by activated protein C (APC) through cleavages in the FVIII heavy chain-derived A1 (Arg(336)) and A2 subunits (Arg(562), the FVIII light chain (LC) contributes to catalysis by binding the enzyme. ELISA-based binding assays showed that FVIII and FVIII LC bound to immobilised active site-modified APC (DEGR-APC) (apparent K(d) ~270 nM and 1.0 μM, respectively).

View Article and Find Full Text PDF

Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones.

View Article and Find Full Text PDF

Factor (F) VIII functions as a cofactor in FXase, markedly accelerating the rate of FIXa-catalyzed activation of FX. Earlier work identified a FX-binding site having μM affinity within the COOH-terminal region of the FVIIIa A1 subunit. In the present study, surface plasmon resonance (SPR), ELISA-based binding assays, and chemical cross-linking were employed to assess an interaction between FX and the FVIII light chain (A3C1C2 domains).

View Article and Find Full Text PDF

Factor VIII (FVIII) consists of a heavy (A1A2B domains) and light chain (A3C1C2 domains), whereas the contiguous A1A2 domains are separate subunits in the cofactor, FVIIIa. FVIII x-ray structures show close contacts between A1 and C2 domains. To explore the role of this region in FVIII(a) stability, we generated a variant containing a disulfide bond between A1 and C2 domains by mutating Arg-121 and Leu-2302 to Cys (R121C/L2302C) and a second variant with a bulkier hydrophobic group (A108I) to better occupy a cavity between A1 and C2 domains.

View Article and Find Full Text PDF

Introduction: Activated protein C (APC) inactivates factor VIIIa (FVIIIa) through cleavages at Arg336 in the A1 subunit and Arg562 in the A2 subunit. Proteolysis at Arg336 occurs 25-fold faster than at Arg562. Replacing residues flanking Arg336 en bloc with the corresponding residues surrounding Arg562 markedly reduced the rate of cleavage at Arg336, indicating a role for these residues in the catalysis mechanism.

View Article and Find Full Text PDF

Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa-Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain.

View Article and Find Full Text PDF

Factor (F) VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains). The activated form of FVIII, FVIIIa, functions as a cofactor for FIXa in catalyzing the membrane-dependent activation of FX. Whereas the FVIII C2 domain is believed to anchor FVIIIa to the phospholipid surface, recent x-ray crystal structures of FVIII suggest that the C1 domain may also contribute to this function.

View Article and Find Full Text PDF