Publications by authors named "Hiromu Sano"

Vascular networks consist of hierarchical structures of various diameters and are necessary for efficient blood distribution. Recent advances in vascular tissue engineering and bioprinting have allowed us to construct large vessels, such as arteries, small vessels, such as capillaries and microvessels, and intermediate-scale vessels, such as arterioles, individually. However, little is known about the control of vessel diameters between small vessels and intermediate-scale vessels.

View Article and Find Full Text PDF

Construction of capillary networks is a fundamental challenge for the development of three-dimensional (3D) tissue engineering. However, it is not well understood how to construct stable capillary networks that maintain a luminal size similar to that of capillary structures (i.e.

View Article and Find Full Text PDF

The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl.

View Article and Find Full Text PDF

In the present study, novel ultradeformable liposomes (menthosomes; MTS), deformable liposomes (transfersomes; TFS) and conventional liposomes (CLP) were compared in their potential for transdermal delivery of meloxicam (MX). MTS, TFS and CLP were investigated for size, size distribution, zeta potential, elasticity, entrapment efficiency and stability. In vitro skin permeation using hairless mice skin was evaluated.

View Article and Find Full Text PDF

Background: Ceramide hydrolysis by ceramidase in the stratum corneum (SC) yields both sphingoid bases and free fatty acids (FFA). While FFA are key constituents of the lamellar bilayers that mediate the epidermal permeability barrier, whether sphingoid bases influence permeability barrier homeostasis remains unknown. Pertinently, alterations of lipid profile, including ceramide and ceramidase activities occur in atopic dermatitis (AD).

View Article and Find Full Text PDF

Menthosomes, novel deformable carriers for the enhancement of transdermal delivery are introduced in this study. Meloxicam (MX)-loaded menthosomes were formulated, and their physicochemical characteristics and skin permeability were evaluated. A two-factor spherical and second-order composite experimental design was used to prepare the formulation of the menthosomes.

View Article and Find Full Text PDF