Cancer-associated fibroblasts (CAF) generate an extracellular matrix (ECM) which provides a repository for factors that promote pancreatic cancer progression. Here, we establish that CAF contribution to pancreatic tumor initiation, i.e.
View Article and Find Full Text PDFUnlabelled: Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvβ3 via upregulation of the β3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment.
View Article and Find Full Text PDFDefining drivers of tumour initiation can provide opportunities to control cancer progression. Here we report that lysophosphatidic acid receptor 4 (LPAR4) becomes transiently upregulated on pancreatic cancer cells exposed to environmental stress or chemotherapy where it promotes stress tolerance, drug resistance, self-renewal and tumour initiation. Pancreatic cancer cells gain LPAR4 expression in response to stress by downregulating a tumour suppressor, miR-139-5p.
View Article and Find Full Text PDFMetabolic reprogramming is one of the major steps that tumor cells take during cancer progression. This process allows the cells to survive in a nutrient- and oxygen-deprived environment, to become stress tolerant, and to metastasize to different sites. Recent studies have shown that reprogramming happens in stromal cells and involves the cross-talk of the cancer cell/tumor microenvironment.
View Article and Find Full Text PDFZika virus (ZIKV) causes microcephaly by killing neural precursor cells (NPCs) and other brain cells. ZIKV also displays therapeutic oncolytic activity against glioblastoma (GBM) stem cells (GSCs). Here we demonstrate that ZIKV preferentially infected and killed GSCs and stem-like cells in medulloblastoma and ependymoma in a SOX2-dependent manner.
View Article and Find Full Text PDFTreatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner.
View Article and Find Full Text PDFBreast cancer cells with stem cell properties are key contributors to metastatic disease, and there remains a need to better understand and target these cells in human cancers. Here, we identified rare stem-like cells in patients' tumors characterized by low levels of the proapoptotic molecule p53-upregulated modulator of apoptosis (PUMA) and showed that these cells play a critical role in tumor progression that is independent of clinical subtype. A signaling axis consisting of the integrin αvβ3, Src kinase, and the transcription factor Slug suppresses PUMA in these cells, promoting tumor stemness.
View Article and Find Full Text PDFIdentifying the molecular basis for cancer cell dependence on oncogenes such as can provide new opportunities to target these addictions. Here, we identify a novel role for the carbohydrate-binding protein galectin-3 as a lynchpin for KRAS dependence. By directly binding to the cell surface receptor integrin αvβ3, galectin-3 gives rise to KRAS addiction by enabling multiple functions of KRAS in anchorage-independent cells, including formation of macropinosomes that facilitate nutrient uptake and ability to maintain redox balance.
View Article and Find Full Text PDFResearch in many cancers has uncovered changes in metabolic pathways that control tumour energetics and biosynthesis, so-called metabolic reprogramming. Studies in clear cell renal cell carcinoma (ccRCC) have been particularly revealing, leading to the concept that ccRCC is a metabolic disease. ccRCC is generally accompanied by reprogramming of glucose and fatty acid metabolism and of the tricarboxylic acid cycle.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC.
View Article and Find Full Text PDFKidney cancer [or renal cell carcinoma (RCC)] is known as "the internist's tumor" because it has protean systemic manifestations, suggesting that it utilizes complex, nonphysiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the Von Hippel-Lindau tumor suppressor, in characterizing higher-grade tumors, we found that the Warburg effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general.
View Article and Find Full Text PDFPurpose: Despite the advent of FDA-approved therapeutics to a limited number of available targets (kinases and mTOR), PFS of kidney cancer (RCC) has been extended only one to two years due to the development of drug resistance. Here, we evaluate a novel therapeutic for RCC which targets the exportin-1 (XPO1) inhibitor.
Materials And Methods: RCC cells were treated with the orally available XPO1 inhibitor, KPT-330, and cell viability and Annexin V (apoptosis) assays, and cell cycle analyses were performed to evaluate the efficacy of KPT-330 in two RCC cell lines.
Cancer Chemother Pharmacol
January 2015
Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase.
View Article and Find Full Text PDFAutosomal-dominant polycystic kidney disease (ADPKD) is a progressive, proliferative renal disease. Kidneys from ADPKD patients are characterized by the presence of cysts that are marked by enhanced proliferation and apoptosis of renal tubular epithelial cells. Current treatment of this disease is supportive, as there are few if any clinically validated targeted therapeutics.
View Article and Find Full Text PDFProstaglandins derived from the cyclooxygenase (COX) pathway and epoxyeicosatrienoic acids (EETs) from the cytochrome P450/soluble epoxide hydrolase (sEH) pathway are important eicosanoids that regulate angiogenesis and tumorigenesis. COX-2 inhibitors, which block the formation of prostaglandins, suppress tumor growth, whereas sEH inhibitors, which increase endogenous EETs, stimulate primary tumor growth and metastasis. However, the functional interactions of these two pathways in cancer are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2014
Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21(WAF1/CIP1)) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of other checkpoint proteins and CDK inhibitors did not affect apoptosis.
View Article and Find Full Text PDFMetabolomics is one of the newcomers among the "omics" techniques, perhaps also constituting the most relevant for the study of pathophysiological conditions. Metabolomics may indeed yield not only disease-specific biomarkers but also profound insights into the etiology and progression of a variety of human disorders. Various metabolomic approaches are currently available to study oncogenesis and tumor progression in vivo, in murine tumor models.
View Article and Find Full Text PDFIn the current work, we carried out a mechanistic study on the cytotoxicity of two compounds, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-N-methyl-benzamide (t-AUCMB) and trans-N-methyl-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzamide (t-MTUCB), that are structurally similar to sorafenib. These compounds show strong cytotoxic responses in various cancer cell lines, despite significant differences in the induction of apoptotic events such as caspase activation and lactate dehydrogenase release in hepatoma cells. Both compounds induce autophagosome formation and LC3I cleavage, but there was little observable effect on mTORC1 or the downstream targets, S6K1 and 4E-binding protein.
View Article and Find Full Text PDFWhile metabolomics has tremendous potential for diagnostic biomarker and therapeutic target discovery, its utility may be diminished by the variability that occurs due to environmental exposures including diet and the influences of the human circadian rhythm. For successful translation of metabolomics findings into the clinical setting, it is necessary to exhaustively define the sources of metabolome variation. To address these issues and to measure the variability of urinary and plasma metabolomes throughout the day, we have undertaken a comprehensive inpatient study in which we have performed non-targeted metabolomics analysis of blood and urine in 26 volunteers (13 healthy subjects with no known disease and 13 healthy subjects with autosomal dominant polycystic kidney disease not taking medication).
View Article and Find Full Text PDFRenal cell carcinoma (RCC) is the sixth most common cancer in the US. While RCC is highly metastatic, there are few therapeutics options available for patients with metastatic RCC, and progression-free survival of patients even with the newest targeted therapeutics is only up to two years. Thus, novel therapeutic targets for this disease are desperately needed.
View Article and Find Full Text PDF“In the search for novel approaches for the treatment of resistant cancers, small molecules targeting the cyclin dependent kinase inhibitors have shown considerable promise”
View Article and Find Full Text PDFEpidemiological and preclinical evidence supports that omega-3 dietary fatty acids (fish oil) reduce the risks of macular degeneration and cancers, but the mechanisms by which these omega-3 lipids inhibit angiogenesis and tumorigenesis are poorly understood. Here we show that epoxydocosapentaenoic acids (EDPs), which are lipid mediators produced by cytochrome P450 epoxygenases from omega-3 fatty acid docosahexaenoic acid, inhibit VEGF- and fibroblast growth factor 2-induced angiogenesis in vivo, and suppress endothelial cell migration and protease production in vitro via a VEGF receptor 2-dependent mechanism. When EDPs (0.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) is the 13th most common cancer in the world and one of the few cancers for which incidence is increasing. This disease is generally asymptomatic at an early stage and is highly metastatic. Frequently discovered by physicians in the process of working up other diseases such as acute kidney injury, RCC is often discovered in an advanced form and many patients have metastases at the time of diagnosis.
View Article and Find Full Text PDFMetabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.
View Article and Find Full Text PDF