Publications by authors named "Hiromi Nakao-Inoue"

Article Synopsis
  • * The study identifies a specific microglial state that responds to type I interferon (IFN-I) and actively engulfs neurons during the early postnatal development of the somatosensory cortex.
  • * Alterations in IFN-I signaling impact microglial function, leading to neuronal damage and increased excitatory neurons, which may contribute to heightened sensitivity to touch, highlighting the importance of microglia in brain development and homeostasis.
View Article and Find Full Text PDF

The Wnt/β-catenin pathway contains multiple high-confidence risk genes that are linked to neurodevelopmental disorders, including autism spectrum disorder. However, its ubiquitous roles across brain cell types and developmental stages have made it challenging to define its impact on neural circuit development and behavior. Here, we show that TCF7L2, which is a key transcriptional effector of the Wnt/β-catenin pathway, plays a cell-autonomous role in postnatal astrocyte maturation and impacts adult social behavior.

View Article and Find Full Text PDF

Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • - Microglia, the brain's resident immune cells, play a crucial role in engulfing neurons during brain development, especially influenced by a distinct subset responsive to Type I interferon (IFN-I).
  • - This specific microglial response was significantly increased after sensory deprivation in young mice, indicating their involvement in neural circuit remodeling.
  • - Disrupting IFN-I signaling led to dysfunctional microglia and increased neuron stress, demonstrating IFN-I's essential role in maintaining proper neuronal health and development in the brain.
View Article and Find Full Text PDF

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity.

View Article and Find Full Text PDF

It is widely assumed that cells must be physically isolated to study their molecular profiles. However, intact tissue samples naturally exhibit variation in cellular composition, which drives covariation of cell-class-specific molecular features. By analyzing transcriptional covariation in 7,221 intact CNS samples from 840 neurotypical individuals, representing billions of cells, we reveal the core transcriptional identities of major CNS cell classes in humans.

View Article and Find Full Text PDF

Neuronal synapse formation and remodeling are essential to central nervous system (CNS) development and are dysfunctional in neurodevelopmental diseases. Innate immune signals regulate tissue remodeling in the periphery, but how this affects CNS synapses is largely unknown. Here, we show that the interleukin-1 family cytokine interleukin-33 (IL-33) is produced by developing astrocytes and is developmentally required for normal synapse numbers and neural circuit function in the spinal cord and thalamus.

View Article and Find Full Text PDF