Publications by authors named "Hiromasa Tanahashi"

Tungsten imido complexes bearing a redox-active ligand, such as N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (L1), N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (L2), and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (L3), were prepared by salt-free reduction of W(═NC6H3-2,6-(i)Pr2)Cl4 (1) using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) followed by addition of the corresponding redox-active ligands. In the initial stage, reaction of W(═NC6H3-2,6-(i)Pr2)Cl4 with MBTCD afforded a tetranuclear W(V) imido cluster, [W(═NC6H3-2,6-(i)Pr2)Cl3]4 (2), which served as a unique precursor for introducing redox-active ligands to the tungsten center to give the corresponding mononuclear complexes with a general formula of W(═NC6H3-2,6-(i)Pr2)Cl3(L) (3, L = L1; 4, L = L2; and 6, L = L3). X-ray analyses of complexes 3 and 6 revealed a neutral coordination mode of L1 and L3 to the tungsten in solid state, while the electron paramagnetic resonance (EPR) spectra of 3 and 4 clarified that a radical was predominantly located on the tungsten center supported by neutral L1 or L2, and the EPR spectra of complex 6 indicated that a radical was delocalized over both the tungsten center and the monoanionic redox-active ligand L3.

View Article and Find Full Text PDF

Electron-rich organosilicon compounds, such as 1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2a), 2,5-dimethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2b), 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2c), and 1,1'-bis(trimethylsilyl)-1,1'-dihydro-4,4'-bipyridine (4), served as versatile reducing reagents of group 4-6 metal chloride complexes, such as Cp2TiCl2, Cp*2TiCl2 (Cp* = η(5)-C5Me5), Cp*TiCl3, Cp*TaCl4, and WCl4(PMe2Ph)2, to generate the corresponding low-valent metal species in a salt-free manner. Nitrogen-containing reductants, such as 2a-c and 4, had stronger reducing ability than the parent organosilicon reductants, 3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1a) and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1b), as well as a pyridine-derived reductant, 1,4-bis(trimethylsilyl)-1-aza-2,5-cyclohexadiene (3). These greater effects of 2a-c and 4 are likely due to their negative one-electron redox potentials, as typically demonstrated in the reduction of Cp2TiCl2, for which compounds 2a and 4 gave the corresponding one-electron reduced products, pyrazine-bridged and 4,4'-bipyridyl-bridged dimeric Ti(III) complexes 5 and 6, and compounds 2b and 2c afforded the same double chloride-bridged dimeric Ti(III) complex, [Cp2Ti]2(μ-Cl)2 (7), though 1a and 1b could not reduce Cp2TiCl2.

View Article and Find Full Text PDF

We developed a salt-free reduction of WCl6 using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) in toluene to give a low-valent trinulcear tungsten complex involving W(II) and W(III) centers, while in the presence of redox active ligands such as α-diketone and α-diimine the same reduction produced W(IV) complexes with the corresponding redox-active ligands, (α-diketone)WCl4 and (α-diimine)WCl4. A W(VI) complex with two α-diketone ligands, (α-diketone)2WCl2, was found to be synthetically equivalent to low-valent W(IV) species that trapped azopyridine to give (α-diketone)WCl2(azopyridine).

View Article and Find Full Text PDF

High-valent tantalum complexes having redox-active α-diimine ligands, (α-diimine)TaCl(n) (n = 3, 4), are prepared by the reaction of TaCl(5), α-diimine ligands, and an organosilicon-based reductant, 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene. Reductive cleavage of the C-Cl bond of polyhaloalkanes is accomplished by trichlorotantalum complexes having dianionic α-diimine ligands via electron transfer from the dianionic ligands, whereas oxidative decomposition of tetraphenylborate is observed using tetrachlorotantalum complexes with monoanionic α-diimine ligands through electron transfer to the monoanionic ligands. Chemically oxidized or reduced complexes of (α-diimine)TaCl(4) are isolated as ligand-centered redox products, [Cp(2)Co][(α-diimine)TaCl(4)] and [(α-diimine)TaCl(4)][WCl(6)], where the α-diimine ligand coordinates to the metal center as a dianionic or neutral ligand, respectively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1v7h0nhjtvo6soiogisfeej4kek5mgn3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once