Publications by authors named "Hiroko Onozuka"

Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified.

View Article and Find Full Text PDF

Inspired by nature: Angelmarin is an anticancer natural product with potent antiausterity activity, that is, selective cytotoxicity towards nutrient-deprived, resistant cancer cells. Through structure-activity relationship studies, three analogues were identified as lead compounds for the develpoment of molecular probes for the investigation of the mode of action and biological targets of the antiausterity compounds.

View Article and Find Full Text PDF

Tumor tissues are often hypoxic because of defective vasculature. We previously showed that tumor tissues are also often deprived of glucose. The efficacy of anticancer drugs is affected by the tumor microenvironment, partly because of the drug delivery and cellular drug resistance; however, the precise mechanisms remain to be clarified.

View Article and Find Full Text PDF

Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients.

View Article and Find Full Text PDF

Human pancreatic cancer cells such as PANC-1 are known to exhibit marked tolerance to nutrition starvation that enables them to survive for prolonged period of time even under extremely nutrient-deprived conditions. Thus, elimination of this tolerance to nutrition starvation is regarded as a novel approach in anticancer drug development. In this study, the MeOH soluble extract of Brazilian red propolis was found to kill 100% PANC-1 cells preferentially in the nutrient-deprived condition at the concentration of 10 microg/mL.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkt9smlelcpvfotg3nqi19a8d8laedamq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once