Cell transplantation using mesenchymal stem cells (MSCs) has emerged as a promising approach to repairing and regenerating injured or impaired organs. However, the survival and retention of MSCs following transplantation remain a challenge. Therefore, we investigated the efficacy of co-transplantation of MSCs and decellularized extracellular matrix (dECM) hydrogels, which have high cytocompatibility and biocompatibility.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2023
Decellularized extracellular matrix (dECM) hydrogels have cytocompatibility, and are currently being investigated for application in soft tissues as a material that promotes native cell infiltration and tissue reconstruction. A dECM hydrogel has broad potential for application in organs with complex structures or various tissue injury models. In this study, we investigated the practical application of a dECM hydrogel by injecting a kidney-derived dECM hydrogel into a rat partial nephrectomy model.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) are a promising cell source for elucidating disease pathology and therapy. The mass supply of hiPSC-derived cells is technically feasible. Carriers that can contain a large number of hiPSC-derived cells and evaluate their functions in vivo-like environments will become increasingly important for understanding disease pathogenesis or treating end-stage organ failure.
View Article and Find Full Text PDFIt has not been considered that nephrons regenerate in adult mammals. We present that an organ-derived extracellular matrix in situ induces nephron regeneration in a preclinical model. A porcine kidney-derived extracellular matrix was sutured onto the surface of partial nephrectomy (PN)-treated kidney.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are the key components of the densely proliferated stroma in pancreatic ductal adenocarcinoma (PDAC) and contribute to tumor progression and drug resistance. CAFs comprise heterogeneous subpopulations playing unique and vital roles. However, the commonly used mouse models have not been able to fully reproduce the histological and functional characteristics of clinical human CAF.
View Article and Find Full Text PDFThe autonomic nervous system (ANS) regulates tissue homeostasis and remodelling through antagonistic effects of noradrenergic sympathetic and cholinergic parasympathetic signalling. Despite numerous reports on the induction of sympathetic neurons from human pluripotent stem cells (hPSCs), no induction methods have effectively derived cholinergic parasympathetic neurons from hPSCs. Considering the antagonistic effects of noradrenergic and cholinergic inputs on target organs, both sympathetic and parasympathetic neurons are expected to be induced.
View Article and Find Full Text PDFRecently, we reported that bacterial incorporation induces cellular transdifferentiation of human fibroblasts. However, the bacterium-intrinsic cellular- transdifferentiation factor remained unknown. Here, we found that cellular transdifferentiation is caused by ribosomes.
View Article and Find Full Text PDFIn this study, we propose a novel method for inducing neuronal cells by briefly exposing them to small-molecule cocktails in a step-by-step manner. Global gene expression analysis with immunohistochemical staining and calcium flux assays reveal the generation of neurons from mouse embryonic fibroblasts. In addition, time-lapse imaging of neural precursor-specific enhancer expression and global gene expression analyses show that the neurons are generated by passing through a neural crest-like precursor stage.
View Article and Find Full Text PDFThe body's motion and function are all in part effected by a vital tissue, the tendon. Tendon injury often results in limited functioning after postoperative procedures and even for a long time after rehabilitation. Although numerous studies have reported surgical procedures using animal models which have contributed to both basic and clinical research, modeling of tendon sutures or postoperative immobilizations has not been performed on small experimental animals, such as mice.
View Article and Find Full Text PDFCell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself.
View Article and Find Full Text PDFIn mammals, both circadian rhythm and aging play important roles in regulating time-dependent homeostasis. We previously discovered an age-related increase element binding protein, hnRNP A3, which binds to the 3'-untranslated region (UTR) of blood coagulation factor IX (FIX). Here, we describe other members of this protein family, hnRNP C and hnRNP H, which bind to the 3'-UTR of the mouse circadian clock gene Period 2 (mPer2).
View Article and Find Full Text PDFCircadian rhythms are endogenous biological timing processes that are ubiquitous in organisms ranging from cyanobacteria to humans. In the photoautotrophic unicellular cyanobacterium Synechococcus elongatus PCC 7942, under continuous light (LL) conditions, the transcription-translation feedback loop (TTFL) of KaiC generates a rhythmic change in the accumulation of KaiC relative to KaiA clock proteins (KaiC/KaiA ratio), which peak and trough at subjective dawn and dusk, respectively. However, the role of TTFL in the cyanobacterial circadian system remains unclear because it is not an essential requirement for the basic oscillation driven by the Kai-based posttranslational oscillator (PTO) and the transcriptional output mechanisms.
View Article and Find Full Text PDFThe filamentous, heterocystous cyanobacterium Anabaena sp. strain PCC 7120 is one of the simplest multicellular organisms that show both morphological pattern formation with cell differentiation (heterocyst formation) and circadian rhythms. Therefore, it potentially provides an excellent model in which to analyze the relationship between circadian functions and multicellularity.
View Article and Find Full Text PDF