Publications by authors named "Hiroko Kitayama"

APOBEC1 (A1) is a cytidine deaminase involved in the regulation of lipids in the small intestine. Herpes simplex virus 1 (HSV-1) is a ubiquitous pathogen that is capable of infecting neurons in the brain, causing encephalitis. Here, we show that A1 is induced during encephalitis in neurons of rats infected with HSV-1.

View Article and Find Full Text PDF

To investigate the events leading to the depletion of CD4(+) T lymphocytes during long-term infection of human immunodeficiency virus type 1 (HIV-1), we infected human CD34(+) cells-transplanted NOD/SCID/IL-2Rgamma(null) mice with CXCR4-tropic and CCR5-tropic HIV-1. CXCR4-tropic HIV-1-infected mice were quickly depleted of CD4(+) thymocytes and both CD45RA(+) naïve and CD45RA(-) memory CD4(+) T lymphocytes, while CCR5-tropic HIV-1-infected mice were preferentially depleted of CD45RA(-) memory CD4(+) T lymphocytes. Staining of HIV-1 p24 antigen revealed that CCR5-tropic HIV-1 preferentially infected effector memory T lymphocytes (T(EM)) rather than central memory T lymphocytes.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) causes fatal and sporadic encephalitis in human. The encephalitis-survivors frequently suffer from symptoms of memory deficits. It remains unclear how HSV-1 induces tissue damages in memory formation-associated brain tissues such as the hippocampus.

View Article and Find Full Text PDF

Macrophages or microglial cells are the major target cells for HIV-1 infection in the brain. The infected cells release neurotoxic factors that may cause severe neuronal cell damage, especially in the basal ganglia and hippocampus. In this study, we used rat OHC to examine the region-specific neuronal cell damage caused by HIV-1-infected macrophages.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1)-infected macrophages damage mature neurons in the brain, although their effect on neuronal development has not been clarified. In this study, we show that HIV-1-infected macrophages produce factors that impair the development of neuronal precursor cells and that soluble viral protein R (Vpr) is one of the factors that has the ability to suppress axonal growth. Cell biological analysis revealed that extracellularly administered recombinant Vpr (rVpr) clearly accumulated in mitochondria where a Vpr-binding protein adenine nucleotide translocator localizes and also decreased the mitochondrial membrane potential, which led to ATP synthesis.

View Article and Find Full Text PDF