Publications by authors named "Hiroko Kawakami"

Terpenes, one of the secondary metabolites produced by plants, have diverse physiological functions. They are volatile compounds with physiological bioactivities (e.g.

View Article and Find Full Text PDF

Although carnosine (β-Ala-L-His) is one of physiological protectants against damages caused by reactive oxygen species (ROS), its reactivity against singlet oxygen (O), an ROS, is still unclear at the molecular level. Theoretically, the reaction consists of two steps: i) oxygenation of the His side chain to form an electrophilic endoperoxide and ii) nucleophilic addition to the endoperoxide. In this study, the end product of O-mediated carnosine oxidation was evaluated using 2D-NMR and other analytical methods both in the presence and absence of external nucleophiles.

View Article and Find Full Text PDF

Endolichenic fungi are expecting for new bioresources of pharmacological compounds. However, the number of investigations targeting antioxidant compounds produced by endolichenic fungi remains limited. To discover new antioxidant compounds, we analyzed the antioxidant activity of the methanol extracts derived from isolated lichen mycobionts or endolichenic fungi induced from Pyxine subcinerea.

View Article and Find Full Text PDF

Vertebrate limbs start to develop as paired protrusions from the lateral plate mesoderm at specific locations of the body with forelimb buds developing anteriorly and hindlimb buds posteriorly. During the initiation process, limb progenitor cells maintain active proliferation to form protrusions and start to express Fgf10, which triggers molecular processes for outgrowth and patterning. Although both processes occur in both types of limbs, forelimbs (Tbx5), and hindlimbs (Isl1) utilize distinct transcriptional systems to trigger their development.

View Article and Find Full Text PDF

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue.

View Article and Find Full Text PDF

Unlabelled: Cnidium vein yellowing virus (CnVYV), cnidium virus X (CnVX), cucumber mosaic virus (CMV) and cnidium virus 1 (CnV1) were detected at extremely high levels in plants showing viral symptoms collected from Iwate and Hokkaido Prefectures, Japan. The complete nucleotide sequence of the newly detected CnVYV and CnV1, and genetic diversity of the cnidium-infecting viruses (CnVYV, CnVX, and CnV1) indicated that South Korean and Japanese cnidium plants had close relationship with each other. All three viruses can infect vegetatively propagated perennials and are vertically transmitted once infection occurs.

View Article and Find Full Text PDF

While γ-glutamylcyclotransferase (GGCT) has been implicated in cancer-cell proliferation, the role of GGCT enzymatic activity in the regulation of cancer-cell growth remains unclear. Toward further understanding of GGCT , here we report a novel cell-permeable chemiluminogenic probe "MAM-LISA-103" that detects intracellular GGCT activity and apply it to imaging. We first developed a chemiluminogenic probe LISA-103, which simply and sensitively detects the enzymatic activity of recombinant GGCT through chemiluminescence.

View Article and Find Full Text PDF

Recent studies illustrate the importance of regulation of cellular metabolism, especially glycolysis and pathways branching from glycolysis, during vertebrate embryo development. For example, glycolysis generates cellular energy ATP. Glucose carbons are also directed to the pentose phosphate pathway, which is needed to sustain anabolic processes in the rapidly growing embryos.

View Article and Find Full Text PDF
Article Synopsis
  • * To detect NIV in grains, scientists developed an immunoassay by first creating NIV and then generating specific antibodies against it using a unique process involving linker and glutaric anhydride.
  • * The study successfully produced two monoclonal antibodies that effectively identify NIV in a competitive enzyme-linked immunosorbent assay, demonstrating their specificity by not reacting with other similar toxins.
View Article and Find Full Text PDF

The Spalt-like 4 transcription factor (SALL4) plays an essential role in controlling the pluripotent property of embryonic stem cells via binding to AT-rich regions of genomic DNA, but structural details on this binding interaction have not been fully characterized. Here, we present crystal structures of the zinc finger cluster 4 (ZFC4) domain of SALL4 (SALL4) bound with different dsDNAs containing a conserved AT-rich motif. In the structures, two zinc fingers of SALL4 recognize an AATA tetranucleotide.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) is essential for limb development, and the mechanisms that govern the propagation and maintenance of its expression has been well studied; however, the mechanisms that govern the initiation of Shh expression are incomplete. Here we report that ETV2 initiates Shh expression by changing the chromatin status of the developmental limb enhancer, ZRS. Etv2 expression precedes Shh in limb buds, and Etv2 inactivation prevents the opening of limb chromatin, including the ZRS, resulting in an absence of Shh expression.

View Article and Find Full Text PDF

Sall4 encodes a transcription factor and is known to participate in the pluripotency network of embryonic stem cells. Sall4 expression is known to be high in early stage post-implantation mouse embryos. During early post-gastrulation stages, Sall4 is highly expressed in the tail bud and distal limb buds, where progenitor cells are maintained in an undifferentiated status.

View Article and Find Full Text PDF

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury.

View Article and Find Full Text PDF

The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated using and in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The ; double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of ; We found that regulates expression prior to hindlimb outgrowth.

View Article and Find Full Text PDF

Bi-potential neuromesodermal progenitors (NMPs) produce both neural and paraxial mesodermal progenitors in the trunk and tail during vertebrate body elongation. We show that , a pluripotency-related transcription factor gene, has multiple roles in regulating NMPs and their descendants in post-gastrulation mouse embryos. deletion using caused body/tail truncation, reminiscent of early depletion of NMPs, suggesting a role of in NMP maintenance.

View Article and Find Full Text PDF

Endolichenic fungi, nonobligate microfungi that live in lichen, are promising as new bioresources of pharmacological compounds. We found that norlichexanthone isolated from the endolichenic fungus in Pertusaria laeviganda exhibited high antioxidant activity. Norlichexanthone produced by endolichenic fungus had the antioxidant activity with same level of ascorbic acid.

View Article and Find Full Text PDF

Mutations in the SALL4 gene cause human syndromes with defects in multiple organs. Sall4 expression declines rapidly in post-gastrulation mouse embryos, and our understanding of the requirement of Sall4 in animal development is still limited. To assess the contributions of Sall4 expressing cells to developing mouse embryos, we monitored temporal changes of the contribution of Sall4 lineages using a Sall4 GFP-CreER knock-in mouse line and recombination-dependent reporter lines.

View Article and Find Full Text PDF

Background: Fgf10 is expressed in various tissues and organs, such as the limb bud, heart, inner ear, and head mesenchyme. Previous studies identified Fgf10 enhancers for the inner ear and heart. However, Fgf10 enhancers for other tissues have not been identified.

View Article and Find Full Text PDF

Isl1 is required for two processes during hindlimb development: initiation of the processes directing hindlimb development in the lateral plate mesoderm and configuring posterior hindlimb field in the nascent hindlimb buds. During these processes, Isl1 expression is restricted to the posterior mesenchyme of hindlimb buds. How this dynamic change in Isl1 expression is regulated remains unknown.

View Article and Find Full Text PDF

Background: Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet.

View Article and Find Full Text PDF

Increasing evidence supports the idea that bone morphogenetic proteins (BMPs) regulate cartilage maintenance in the adult skeleton. The aim of this study is to obtain insight into the regulation of BMP activities in the adult skeletal system. We analyzed expression of Noggin and Gremlin1, BMP antagonists that are known to regulate embryonic skeletal development, in the adult skeletal system by Noggin-LacZ and Gremlin1-LacZ knockin reporter mouse lines.

View Article and Find Full Text PDF

A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAβ1-3Xylα1]-3GlcAβ1-4Xyl-Rbo5P-1Rbo5P-3GalNAcβ1-3GlcNAcβ1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear.

View Article and Find Full Text PDF

Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo.

View Article and Find Full Text PDF

Glycosylation is an essential post-translational modification that underlies many biological processes and diseases. α-dystroglycan (α-DG) is a receptor for matrix and synaptic proteins that causes muscular dystrophy and lissencephaly upon its abnormal glycosylation (α-dystroglycanopathies). Here we identify the glycan unit ribitol 5-phosphate (Rbo5P), a phosphoric ester of pentose alcohol, in α-DG.

View Article and Find Full Text PDF

Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed.

View Article and Find Full Text PDF