Extracellular matrix (ECM) provides fundamental support for epithelial tissues and controls cell function. The chemistry and mechanical properties of ECM components, including stiffness, elasticity, and fibrillar organization, influence epithelial tissue responses. Here we present a protocol describing the culture and transfer of epithelial acini from Matrigel to collagen gel and an approach to axially align the collagen fibrils by the external gel stretching.
View Article and Find Full Text PDFEpithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here, we focus on understanding cellular mechanisms for elongation using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels.
View Article and Find Full Text PDFDendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines.
View Article and Find Full Text PDFBackground Information: Epithelial collective cell migration requires the intrinsic locomotor activity of cells to be coordinated across populations. This coordination is governed by the presence of cell-cell adhesions as well as the cooperative behaviour of cells within the monolayer.
Results: Here, we report a role for Caveolin-1 (CAV1) in epithelial collective cell migration.
Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion.
View Article and Find Full Text PDFBy happy chance, the founding of Traffic in 1999 coincided with a clutch of reports that documented the endocytosis and recycling of classical cadherin adhesion receptors. This stimulated a concerted effort to elucidate the molecular regulation of cadherin endocytosis and to identify its functional implications. In particular, endocytosis provided new perspectives to understand how cadherins are modulated during tissue morphogenesis.
View Article and Find Full Text PDF