Objective: This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice.
Methods: Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed.
Objectives: Details about salivary gland tumor histogenesis remain unknown. Here, we established a newly generated murine salivary gland tumor model that could overexpress pleomorphic adenoma gene 1 (PLAG1) and attempted to clarify the events that occur during the early phase of salivary gland tumor histogenesis.
Methods: Salivary gland tumors were generated using murine models (Sox9IRES-CreERT2; ROSA26-PLAG1).
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection.
View Article and Find Full Text PDFIntroduction: The role of osteopontin (OPN) following severe injury remains to be elucidated, especially its relationship with type I collagen (encoded by the gene) secretion by newly-differentiated odontoblast-like cells (OBLCs). In this study, we examined the role of OPN in the process of reparative dentin formation with a focus on reinnervation and revascularization after tooth replantation in knockout (KO) and wild-type (WT) mice.
Methods: Maxillary first molars of 2- and 3-week-old- KO and WT mice ( KO 2W, KO 3W, WT 2W, and WT 3W groups) were replanted, followed by fixation 3-56 days after operation.
Chondroitin sulfate proteoglycan (CSPG), one of the major extracellular matrices, plays an important part in organogenesis. Its core protein and chondroitin sulfate (CS) chain have a specific biological function. To elucidate the role of CS in the developmental and healing process of the dental pulp, we performed an experimental tooth replantation in CS N-acethylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice.
View Article and Find Full Text PDFJ Oral Biosci
March 2022
Objectives: Original odontoblasts and regenerated odontoblast-like cells (OBLCs) may differently regulate Nestin expression. This study aimed to investigate the role of the subodontoblastic layer (SOBL) using green fluorescent protein (GFP) reactivity in the process of OBLC differentiation after tooth drilling in Nestin-enhanced GFP transgenic mice.
Methods: A groove-shaped cavity was prepared on the mesial surface of the maxillary first molars of 5- or 6-week-old mice under deep anesthesia.
Hypoxia is a state of inadequate supply of oxygen. Increasing evidence indicates that a hypoxic environment is strongly associated with abnormal organ development. Oxygen nanobubbles (ONBs) are newly developed nanomaterials that can deliver oxygen to developing tissues, including hypoxic cells.
View Article and Find Full Text PDFStem cells are maintained in specific niches that strictly regulate their proliferation and differentiation for proper tissue regeneration and renewal. Molecular oxygen (O) is an important component of the niche microenvironment, but little is known about how O governs epithelial stem cell (ESC) behavior. Here, we demonstrate that O plays a crucial role in regulating the proliferation of ESCs using the continuously growing mouse incisors.
View Article and Find Full Text PDFIntroduction: Responses of oral-microflora-exposed dental pulp to a triple antibiotic paste (TAP), a mixture of ciprofloxacin, metronidazole, and minocycline in ointment with macrogol and propylene glycol, remain to be fully clarified at the cellular level. This study aimed to elucidate responses of oral-microflora-exposed dental pulp to capping with TAP in mouse molars.
Methods: A cavity was prepared on the first molars of 6-week-old mice to expose the dental pulp for 24 h.
Background: Although numerous reports have demonstrated that the junctional epithelium (JE) is derived from the reduced enamel epithelium (REE), the fate of the REE-derived JE remains controversial. The present study elucidated the fate of the REE-derived JE and the cell dynamics of stem/progenitor cells in the JE following tooth eruption.
Methods: Mandibular first molar germs (embryonic days 15 to postnatal 1-day-old) were transplanted into the socket of 2-week-old mice after extraction of the upper first molars of B6 wild-type (WT) and green fluorescent protein (GFP) transgenic mice.
Chondrogenesis is accompanied by not only cellular renovation, but also metabolic stress. Therefore, macroautophagy/autophagy is postulated to be involved in this process. Previous reports have shown that suppression of autophagy during chondrogenesis causes mild growth retardation.
View Article and Find Full Text PDFObjectives: Continuously growing rodent incisors have an apically located epithelial stem cell compartment, known as an "apical bud" (AB). Few studies have described the morphological features of ABs and stem cell niches in continuously growing premolars/molars. We attempted to clarify the relationship between the three-dimensional configuration of ABs and the stem cell niches in guinea pig cheek teeth.
View Article and Find Full Text PDFGlycogen is the stored form of glucose and plays a major role in energy metabolism. Recently, it has become clear that enzymatically synthesized glycogen (ESG) has biological functions, such as the macrophage-stimulating activity. This study aimed to evaluate the effect of ESG on osteogenesis.
View Article and Find Full Text PDFChondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria.
View Article and Find Full Text PDFThe Nestin gene encodes type VI intermediate filament and is known to be expressed in undifferentiated cells during neurogenesis and myogenesis. To regulate Nestin expression, the first or second intron enhancer is activated in a tissue-dependent manner, for example, the former in mesodermal cells and the latter in neural stem cells. Although Nestin has also been used as a differentiation marker for odontoblasts during tooth development, how Nestin expression is regulated in odontoblasts remains unclear.
View Article and Find Full Text PDFMineral trioxide aggregate (MTA) is a commonly used dental pulp-capping material with known effects in promoting reparative dentinogenesis. However, the mechanism by which MTA induces dentine repair remains unclear. The aim of the present study was to investigate the role of prostaglandin E (PGE) in dentine repair by examining the localisation and mRNA expression levels of its transporter (Pgt) and two of its receptors (Ep2 and Ep4) in a rat model of pulpotomy with MTA capping.
View Article and Find Full Text PDFThis study aimed to analyze the mRNA expression and protein localization of prostaglandin I (PGI) synthase (PGIS), the PGI receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6-72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR.
View Article and Find Full Text PDFThe mechanisms regulating the maintenance of quiescent adult stem cells in teeth remain to be fully elucidated. Our aim is to clarify the relationship between BrdU label-retaining cells (LRCs) and sonic hedgehog (Shh) signaling in murine teeth. After prenatal BrdU labeling, mouse pups were analyzed during postnatal day 1 (P1) to week 5 (P5W).
View Article and Find Full Text PDFHighly coordinated regulation of cell proliferation and differentiation contributes to the formation of functionally shaped and sized teeth; however, the mechanism underlying the switch from cell cycle exit to cell differentiation during odontogenesis is poorly understood. Recently, we identified pannexin 3 (Panx3) as a member of the pannexin gap junction protein family from tooth germs. The expression of Panx3 was predominately localized in preodontoblasts that arise from dental papilla cells and can differentiate into dentin-secreting odontoblasts.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone.
View Article and Find Full Text PDFDuring tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology.
View Article and Find Full Text PDFMsh homeobox 1 (MSX1) encodes a transcription factor implicated in embryonic development of limbs and craniofacial tissues including bone and teeth. Although MSX1 regulates osteoblast differentiation in the cranial bone of young animal, little is known about the contribution of MSX1 to the osteogenic potential of human cells. In the present study, we investigate the role of MSX1 in osteogenic differentiation of human dental pulp stem cells isolated from deciduous teeth.
View Article and Find Full Text PDFCells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased.
View Article and Find Full Text PDFIntroduction: This study analyzed the detailed biological events underlying pulpal dynamics evoked by 3Mix (the mixture of ciprofloxacin, metronidazole, and minocycline) solution after intentionally delayed tooth replantation because 3Mix improves pulpal healing after tooth injuries.
Methods: The maxillary first molars of 3-week-old mice were extracted and immersed in 3Mix solution for 30 minutes in comparison with phosphate buffered saline (PBS) alone. Cell proliferation, apoptosis, and differentiation were assessed in extracted/replanted teeth during days 0-14 using immunohistochemistry, apoptosis assay, and reverse-transcriptase polymerase chain reaction.
We have proposed the new hypothesis that dental pulp stem cells play crucial roles in the pulpal healing process following exogenous stimuli in cooperation with progenitors. This study aimed to establish an in vitro culture system for evaluating dentin-pulp complex regeneration with special reference to the differentiation capacity of slow-cycling long-term label-retaining cells (LRCs). Three intraperitoneal injections of BrdU were given to pregnant ICR mice to map LRCs in the mature tissues of born animals.
View Article and Find Full Text PDF