Publications by authors named "Hiroki Umeshima"

CCCTC-binding factor (CTCF) has a key role in higher-order chromatin architecture that is important for establishing and maintaining cell identity by controlling gene expression. In the mature cerebellum, CTCF is highly expressed in Purkinje cells (PCs) as compared with other cerebellar neurons. The cerebellum plays an important role in motor function by regulating PCs, which are the sole output neurons, and defects in PCs cause motor dysfunction.

View Article and Find Full Text PDF

Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes.

View Article and Find Full Text PDF

Nuclear migration of newly born neurons is essential for cortex formation in the brain. The nucleus is translocated by actin and microtubules, yet the actual force generated by the interplay of these cytoskeletons remains elusive. High-resolution time-lapse observation of migrating murine cerebellar granule cells revealed that the nucleus actively rotates along the direction of its translocation, independently of centrosome motion.

View Article and Find Full Text PDF

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks.

View Article and Find Full Text PDF

Background: Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma.

View Article and Find Full Text PDF

Neural activity plays roles in the later stages of development of cortical excitatory neurons, including dendritic and axonal arborization, remodeling, and synaptogenesis. However, its role in earlier stages, such as migration and dendritogenesis, is less clear. Here we investigated roles of neural activity in the maturation of cortical neurons, using calcium imaging and expression of prokaryotic voltage-gated sodium channel, NaChBac.

View Article and Find Full Text PDF

Caprice [C19orf21 actin-bundling protein in characteristic epithelial cells, also called mitotic interactor and substrate of Plk1 (MISP)] is a novel actin-related protein identified in the highly-insoluble subcellular scaffold proteins. This protein contains multiple actin-binding sites, forms characteristic mesh-like F-actin bundles in vitro, and exhibits capricious localization and expression patterns in vivo. Overexpression or knock-down of Caprice resulted in a dramatic effect on cellular morphology by inducing stress fiber-like thick filaments or filopodial formations, respectively.

View Article and Find Full Text PDF

The cerebellar granule cell is a unique neuron which undergoes tangential migration along axonal tracts and radial migration along glial fibers sequentially during postnatal development. Little is known about molecular bases of the differential kinetics of tangential and radial migration. Here we developed a time-lapse imaging assay for tangential migration of cerebellar granule cells, and investigated comparative contributions of cyclin-dependent kinase 5 (CDK5), a key regulator of neuronal migration, in tangential and radial migration of granule cells in vivo and in organotypic cultures.

View Article and Find Full Text PDF

Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 amounts in Lis1(+/-) mouse embryonic fibroblast cells and rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and beta-COP-positive vesicles.

View Article and Find Full Text PDF

During neuronal migration in the developing brain, it is thought that the centrosome precedes the nucleus and provides a cue for nuclear migration along the microtubules. In time-lapse imaging studies of radially migrating granule cells in mouse cerebellar slices, we observed that the movements of the nucleus and centrosome appeared to occur independently of each other. The nucleus often migrated ahead of the centrosome during its saltatory movement, negating the supposed role of the centrosome in pulling the nucleus.

View Article and Find Full Text PDF

During lamination of the cerebellar cortex, granule cells initially migrate tangentially along the external granule layer, and then make a vertical turn and migrate radially to the internal granule layer. We comparatively analyzed the properties of biphasic migration of granule cells in a microexplant culture in which quantitation of morphology and subcellular localization of molecules were readily accomplished. Tangential migration was guided by a leading process that later formed a parallel fiber axon.

View Article and Find Full Text PDF