Publications by authors named "Hiroki Ueharu"

Objective: Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis.

View Article and Find Full Text PDF

Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis.

View Article and Find Full Text PDF

Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States.

View Article and Find Full Text PDF

Craniosynostosis is a congenital anomaly characterized by the premature fusion of cranial sutures. Sutures are a critical connective tissue that regulates bone growth; their aberrant fusion results in abnormal shapes of the head and face. The molecular and cellular mechanisms have been investigated for a long time, but knowledge gaps remain between genetic mutations and mechanisms of pathogenesis for craniosynostosis.

View Article and Find Full Text PDF

Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing.

View Article and Find Full Text PDF

Craniofacial anomalies (CFA) are a diverse group of deformities, which affect the growth of the head and face. Dysregulation of cranial neural crest cell (NCC) migration, proliferation, differentiation, and/or cell fate specification have been reported to contribute to CFA. Understanding of the mechanisms through which cranial NCCs contribute for craniofacial development may lead to identifying meaningful clinical targets for the prevention and treatment of CFA.

View Article and Find Full Text PDF

Podoplanin, PDPN, is a mucin-type transmembrane glycoprotein widely expressed in many tissues, including lung, kidney, lymph nodes, and mineralized tissues. Its function is critical for lymphatic formation, differentiation of type I alveolar epithelial lung cells, and for bone response to biomechanical loading. It has previously been shown that Pdpn null mice die at birth due to respiratory failure emphasizing the importance of Pdpn in alveolar lung development.

View Article and Find Full Text PDF

BMP signaling plays pleiotropic roles in various tissues during embryogenesis and after birth. We have previously generated a constitutively activated Acvr1(ca-Acvr1) transgenic mouse line (line L35) through pronuclei injection to investigate impacts of enhanced BMP signaling in a tissue specific manner. However, line L35 shows a restricted expression pattern of the transgene.

View Article and Find Full Text PDF

Energy metabolism is the process of generating energy (i.e. ATP) from nutrients.

View Article and Find Full Text PDF

Mammalian T cell death-associated gene 8 (TDAG8)s are activated by extracellular protons. In the present study, we examined whether the TDAG8 homologs of other species are activated by protons as they are in mammals. We found that Xenopus TDAG8 also stimulated cAMP response element (CRE)-driven promoter activities reflecting the activation of Gs/cAMP signaling pathways when they are stimulated by protons.

View Article and Find Full Text PDF

In the pituitary gland, S100β-positive cells localize in the neurohypophysis and adenohypophysis but the lineage of the two groups remains obscure. S100β is often observed in many neural crest-derived cell types. Therefore, in this study, we investigate the origin of pituitary S100β-positive cells by immunohistochemistry for SOX10, a potent neural crest cell marker, using S100β-green fluorescence protein-transgenic rats.

View Article and Find Full Text PDF

The adenohypophysis comprises six types of endocrine cells, including PIT1-lineage cells such as growth hormone (GH)-producing cells and heterogeneous non-endocrine cells, such as pituitary stem/progenitor cells as a source of endocrine cells. We determine the expression of characteristic stem cell marker genes, including sex-determining region Y-box 2 (Sox2), in mouse pituitary-derived non-endocrine cell lines Tpit/E, Tpit/F1 and TtT/GF. We observed high expression of fibroblast growth factor (FGF) receptors in Tpit/F1 cells, which we characterised by cultivation in medium containing a basic FGF and B27 supplement as used for neural stem-cell differentiation.

View Article and Find Full Text PDF

The anterior pituitary originates from the adenohypophyseal placode. Both the preplacode region and neural crest (NC) derive from subdivision of the neural border region, and further individualization of the placode domain is established by a reciprocal interaction between placodal precursors and NC cells (NCCs). It has long been known that NCCs are present in the adenohypophysis as interstitial cells.

View Article and Find Full Text PDF

Recent studies have demonstrated that Sox2-expressing stem/progenitor cells play roles in the pituitary cell turnover. Two types of niches have been proposed for stem/progenitor cells, the marginal cell layer (MCL) and the dense cell clusters in the parenchyma. Among them, the appearance of the parenchymal-niche only after birth indicates that this niche is involved in the cell turnover required for the postnatal pituitary.

View Article and Find Full Text PDF

PROP1 is a pituitary specific transcription factor that plays a crucial role in pituitary organogenesis. The Prop1 shows varied expression patterns that promptly emerge and then fade during the early embryonic period. However, the regulatory mechanisms governing Prop1 expression remain unclear.

View Article and Find Full Text PDF

The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells.

View Article and Find Full Text PDF

The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshβ. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshβ between LHX2 and LHX3s.

View Article and Find Full Text PDF

Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life.

View Article and Find Full Text PDF

The pituitary gland, an indispensable endocrine organ that synthesizes and secretes pituitary hormones, develops with the support of many factors. Among them, neuronatin (NNAT), which was discovered in the neonatal mouse brain as a factor involved in neural development, has subsequently been revealed to be coded by an abundantly expressing gene in the pituitary gland but its role remains elusive. We analyze the expression profile of Nnat and the localization of its product during rat pituitary development.

View Article and Find Full Text PDF

We have recently shown that cells positive for the paired-related homeobox transcription factors PRRX1 and PRRX2 occur in the rat pituitary, and that they are derived from two different origins: pituitary-derived cells positive for stem cell marker SOX2 and extra-pituitary-derived cells negative for SOX2. In this study, we have further characterized the PRRX1- and PRRX2-positive cells that originate from extra-pituitary cells. Immunohistochemical analyses were performed with specific antibodies against PRRX1 and PRRX2 in order to clarify their roles in pituitary vasculogenesis.

View Article and Find Full Text PDF

We have recently reported that Sox2-expressing pituitary stem/progenitor cells contact each other via a tight-junction protein CAR to form stem/progenitor cell niches in the marginal cell layer facing the lumen and in the clusters scattered in the parenchyma of the anterior lobe. However, the microenvironment of the niche for the maintenance of stem cell function in the pituitary remains obscure. In this study of pituitary stem/progenitor cell niches, we have attempted to identify the expression of juxtacrine factor ephrin and its receptor.

View Article and Find Full Text PDF

Paired-related transcription factors, PRRX1 and PRRX2, which are present in mesenchymal tissues and participate in mesenchymal cell differentiation, were recently found in the stem/progenitor cells of the pituitary gland of ectodermal origin. To clarify the role of PRRX1 and PRRX2 in the pituitary gland, the present study first aimed to identify transcription factors that regulate Prrx1 and Prrx2 expression. A promoter assay for the upstream regions of both genes was performed by co-transfection of the expression vector of several transcription factors, many of which are frequently found in the pituitary stem/progenitor cells.

View Article and Find Full Text PDF

The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool for investigating the function of derived tissue.

View Article and Find Full Text PDF

Some non-endocrine cells in the pituitary anterior lobe are responsible for providing stem/progenitor cells to maintain hormone-producing cells. In particular, cells expressing S100β protein, a calcium-binding protein, have been hypothesized to be a pituitary cell resource. Accumulating data have revealed that S100β-positive cells comprise heterogeneous populations and some of them certainly show stem/progenitor characteristics in vivo.

View Article and Find Full Text PDF