Super-resolution imaging techniques based on single molecule localization microscopy (SMLM) broke the diffraction limit of optical microscopy in living samples with the aid of photoswitchable fluorescent probes and intricate microscopy systems. Here, we developed a fluorescent protein, SPOON, which can be switched off by excitation light illumination and switched on by thermally induced dehydration, resulting in an apparent spontaneous blinking behavior. This unique property of SPOON provides a simple SMLM-based super-resolution imaging platform which requires only a single 488 nm laser.
View Article and Find Full Text PDFFar-field super-resolution fluorescence microscopy has enabled us to visualize live cells in great detail and with an unprecedented resolution. However, the techniques developed thus far have required high-power illumination (102-106 W/cm2), which leads to considerable phototoxicity to live cells and hampers time-lapse observation of the cells. In this study we show a highly biocompatible super-resolution microscopy technique that requires a very low-power illumination.
View Article and Find Full Text PDF