Mirafiori lettuce big-vein virus (MLBVV) and Lettuce big-vein associated virus (LBVaV) are found in association with big-vein disease of lettuce. Discrimination between the two viruses is critical for elucidating the etiology of big-vein disease. Using specific antibodies to MLBVV and LBVaV for western blotting and exploiting differences between MLBVV and LBVaV in host reaction of cucumber and temperature dependence in lettuce, we separated the two viruses by transfering each virus from doubly infected lettuce plants to cucumber or lettuce plants.
View Article and Find Full Text PDFLettuce big-vein virus (LBVV) is the type species of the genus Varicosavirus and is a two-segmented negative-sense single-stranded RNA virus. The larger LBVV genome segment (RNA1) consists of 6797 nt and encodes an L polymerase that resembles that of rhabdoviruses. Here, the nucleotide sequence of the second LBVV genome segment (RNA2) is reported.
View Article and Find Full Text PDFThe complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosavirus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted M(r) of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA.
View Article and Find Full Text PDFA sequence of 1425 nt was established that included the complete coat protein (CP) gene of Lettuce big-vein virus (LBVV). The LBVV CP gene encodes a 397 amino acid protein with a predicted M(r) of 44486. Antisera raised against synthetic peptides corresponding to N-terminal or C-terminal parts of the LBVV CP reacted in Western blot analysis with a protein with an M(r) of about 48000.
View Article and Find Full Text PDFThe DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels.
View Article and Find Full Text PDF