Publications by authors named "Hiroki Fujieda"

Animal models for retinal degeneration are essential for elucidating its pathogenesis and developing new therapeutic strategies in humans. N-methyl-N-nitrosourea (MNU) has been extensively used to construct a photoreceptor-specific degeneration model, which has served to unveil the molecular process of photoreceptor degeneration as well as the mechanisms regulating the protective responses of remaining cells. Methyl methanesulphonate (MMS), also known to cause photoreceptor degeneration, is considered a good alternative to MNU due to its higher usability; however, detailed pathophysiological processes after MMS treatment remain uncharacterized.

View Article and Find Full Text PDF

Retinal Müller glia have a capacity to regenerate neurons in lower vertebrates like zebrafish, but such ability is extremely limited in mammals. In zebrafish, Müller glia proliferate after injury, which promotes their neurogenic reprogramming while inhibiting reactive gliosis. In mammals, however, how the cell cycle affects the fate of Müller glia after injury remains unclear.

View Article and Find Full Text PDF

Purpose: The proliferative and neurogenic potential of retinal Müller glia after injury varies widely across species. To identify the endogenous mechanisms regulating the proliferative response of mammalian Müller glia, we comparatively analyzed the expression and function of nestin, an intermediate filament protein established as a neural stem cell marker, in the mouse and rat retinas after injury.

Methods: Nestin expression in the retinas of C57BL/6 mice and Wistar rats after methyl methanesulfonate (MMS)-induced photoreceptor injury was examined by immunofluorescence and Western blotting.

View Article and Find Full Text PDF

Mammalian Müller glia express transcription factors and cell cycle regulators essential for the function of retinal progenitors, indicating the latent neurogenic capacity; however, the role of these regulators remains unclear. To gain insights into the role of these regulators in Müller glia, we analyzed expression of transcription factors (Pax6, Vsx2 and Nfia) and cell cycle regulators (cyclin D1 and D3) in rodent Müller glia, focusing on their age- and cell cycle-related expression patterns. Expression of Pax6, Vsx2, Nfia and cyclin D3, but not cyclin D1, increased in Müller glia during development.

View Article and Find Full Text PDF

N-methyl-N-nitrosourea (MNU) is known to cause apoptosis of photoreceptor cells and changes in retinal pigment epithelium (RPE). However, the changes in choriocapillaris, which nourishes photoreceptor cells by diffusing tissue fluid through RPE, have not been reported in detail. Therefore, we studied the ultrastructural transformation in and around the choriocapillaris to characterize the interdependence between choriocapillaris and surrounding tissue components in a mouse model.

View Article and Find Full Text PDF

Müller glia, the principal glial cell type in the retina, have the potential to reenter the cell cycle after retinal injury. In mammals, proliferation of Müller glia is followed by gliosis, but not regeneration of neurons. Retinal injury is also accompanied by phagocytic removal of degenerated cells.

View Article and Find Full Text PDF

This report presents a case of deep peroneal nerve palsy caused by an injury during drilling for distal locking screws of a T-shaped locking plate used for osteosynthesis of medial open-wedge high tibial osteotomy. A cadaveric simulation study reproduced the risk of injury during the surgery.

View Article and Find Full Text PDF

Glucokinase (GK) is an enzyme that plays an important role as a glucose sensor while maintaining whole body glucose homeostasis. Allosteric activators of GK (GKAs) have the potential to treat type 2 diabetes mellitus. To identify novel GKAs, a series of compounds based on a thiophenyl-pyrrolidine scaffold were designed and synthesized.

View Article and Find Full Text PDF

The anatomical variations of the confluence of sinuses were examined, focusing on the continuity of the superior sagittal sinus (SSS) and the transverse sinuses (TSs). In the 142 specimens studied, there were 72 symmetric cases (50.7%) and 70 asymmetric cases (49.

View Article and Find Full Text PDF

The clinical anatomy of the recurrent artery of Heubner (RAH) was examined, focusing on its number, origin, and course, in a large number of brain specimens. We studied 724 RAH in total from 357 brain specimens (714 hemispheres). In 98.

View Article and Find Full Text PDF

Background: Cyclin-dependent kinase (CDK) inhibitors play an important role in regulating cell cycle progression, cell cycle exit and cell differentiation. p27 (p27), one of the major CDK inhibitors in the retina, has been shown to control the timing of cell cycle exit of retinal progenitors. However, the precise role of this protein in retinal development remains largely unexplored.

View Article and Find Full Text PDF

Purpose: p27 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage.

View Article and Find Full Text PDF

Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture.

View Article and Find Full Text PDF

Purpose: Müller glia, the principal glial cell type in the retina, have the potential to proliferate and regenerate neurons after retinal damage. However, unlike the situation in fish and birds, this capacity of Müller glia is extremely limited in mammals. To gain new insights into the mechanisms that hamper retinal regeneration in mammals, we examined the cell cycle progression and DNA damage response in Müller glia after retinal damage.

View Article and Find Full Text PDF

We disclosed a novel series of G-protein coupled receptor 119 (GPR119) agonists based on a bicyclic amine scaffold. Through the optimization of hit compound 1, we discovered that the basic nitrogen atom of bicyclic amine played an important role in GPR119 agonist activity expression and that an indanone in various bicyclic rings was suitable in this series of compounds. The indanone derivative 2 showed the effect of plasma glucose control in oGTT and scGTT in the rodent model.

View Article and Find Full Text PDF

Color vision is supported by retinal cone photoreceptors that, in most mammals, express two photopigments sensitive to short (S-opsin) or middle (M-opsin) wavelengths. Expression of the Opn1sw and Opn1mw genes, encoding S-opsin and M-opsin, respectively, is under the control of nuclear receptors, including thyroid hormone receptor beta2 (TRbeta2), retinoid X receptor gamma (RXRgamma), and RORbeta, a member of the retinoic acid receptor-related orphan receptor (ROR) family. We now demonstrate that RORalpha, another member of the ROR family, regulates Opn1sw, Opn1mw, as well as Arr3 (cone arrestin) in the mouse retina.

View Article and Find Full Text PDF

A weak, nonselective G protein-coupled receptor 120 (GPR120) agonist 10 was found by screening a series of carboxylic acids derived from the peroxisome proliferator-activated receptor gamma (PPARgamma) agonist 3. Modification based on the homology model of GPR120 led to the first GPR120-selective agonist 12. These results provide a basis for constructing new tools for probing the biology of GPR120 and for developing new candidate therapeutic agents.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) regulates many aspects of neuronal development, including survival, axonal and dendritic growth and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF in retinal development, the retinal cell types expressing BDNF remains poorly defined. The goal of the present study was to determine the localization of BDNF in the mammalian retina, with special focus on the subtypes of amacrine cells, and to characterize, at the cellular level, the effects of constant light exposure during early postnatal period on retinal expression of BDNF.

View Article and Find Full Text PDF

To find novel PPAR ligands, we prepared several 3-{3 or 4-[2-(nonylpyridin-2-ylamino)ethoxy]phenyl}propanoic acid derivatives which were designed based on the structure of our previous PPARgamma ligand 1. In PPAR binding affinity assays, compound 4, which had an ethoxy group at the C-2 position of the propanoic acid of 1, showed selective binding affinity for PPARgamma. Compound 3, with an ethyl group at the C-2 position, was found to be a PPARalpha/gamma dual ligand.

View Article and Find Full Text PDF

To find novel PPARdelta-selective agonists, we designed and synthesized phenylpropanoic acid derivatives bearing 6-substituted benzothiazoles. Optimization of this series led to the identification of a potent and selective PPARdelta agonist 17. Molecular modeling suggested that compound 17 occupies the Y-shaped pocket of PPARdelta appropriately.

View Article and Find Full Text PDF

The present study investigates whether and how the pineal or its hormone melatonin influences female reproductive functions, namely the litter size, prenatal development of offsprings, and estrous cyclicity, especially its age-related cessation in a non-seasonal breeder, the laboratory rat. Wistar rats were maintained under a 24 h light-dark (12Lratio12D) cycle. Female rats were divided into 3 groups: non-operated (NO), sham-operated (SX), and pinealectomized (PX).

View Article and Find Full Text PDF

To develop novel PPARalpha ligands, we designed and synthesized several 3-{3-[2-(nonylpyridin-2-ylamino)ethoxy]phenyl}propanoic acid derivatives. Compound 10, the meta isomer of a PPARgamma agonist 1, has been identified as a PPARalpha ligand. The introduction of methyl and ethyl groups at the C-2 position of the propanoic acid of 10 further improved the PPARalpha-binding potency.

View Article and Find Full Text PDF

The homeobox gene CHX10 is required for retinal progenitor cell proliferation early in retinogenesis and subsequently for bipolar neuron differentiation. To clarify the molecular mechanisms employed by CHX10 we sought to identify its target genes. In a yeast one-hybrid assay Chx10 interacted with the Ret1 site of the photoreceptor-specific gene Rhodopsin.

View Article and Find Full Text PDF

To develop novel PPARgamma ligands, we synthesized thirteen 3-{4-(2-aminoethoxy)phenyl}propanoic acid derivatives, which are designed based on the structures of rosiglitazone and 15d-PGJ2. Among these compounds, compound 9 was found to be as potent as rosiglitazone in a binding assay and a preadipocyte differentiation test. Molecular modeling suggested that the nonyl group of 9 interacted with hydrophobic amino acid residues constructing the hydrophobic region of PPARgamma protein where the alkyl chain of 15d-PGJ2 is expected to be located.

View Article and Find Full Text PDF

AII amacrine cells are critical interneurons in the rod pathway of mammalian retina, active primarily in dim lighting conditions. Melatonin, a neuromodulator produced at night in the retina, is believed to induce retinal adaptation to dim lighting conditions in most vertebrate species examined to date, including humans. We hypothesized that melatonin may influence retinal light adaptation by acting on AII cells directly and thus investigated whether melatonin receptors were expressed in AII neurons.

View Article and Find Full Text PDF